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Abstract 
The ensemble multi-model bagging approach is considered. We propose a nonlinear adaptive bagging 
procedure which applies F-transform in its adaptive form to the results of a traditional weighting. This leads 
to further decrease of ensemble errors with low extra computational and time cost. Metamodel architecture 
and corresponding optimal learning algorithms are presented in details. Simulation based on short-term 
electric load forecasting problem confirms theoretical results and shows a significant decrease of the 
forecasting error in comparison to a linear approach. 
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1. Introduction 

Currently, Computational Intelligence (CI) systems such as Artificial Neural Networks (ANNs), both 
deep (DNNs) and traditional – shallow (SNNs), Neuro-Fuzzy Systems (NFS), Neo-Fuzzy Systems, etc. 
have been widely used to solve many Data Mining problems. This success is explained by their 
universal approximating and extrapolating capabilities and the ability to learn, i.e. adjust their 
parameters based on the data obtained from the observed object during its operation. At the same 
time, quite often there is a problem of choosing a specific system or network that can best cope with 
the problem being solved. Although DNNs provide high quality solutions to the problem, but require 
very large volumes of training samples and a lot of time for their training. SNNs such as Radial Basis 
Function Neural Networks (RBFNs) are inferior to DNNs in terms of accuracy, but are able to learn 
online, i.e. solve Data Stream Mining problems. Neuro-Fuzzy and Neo-Fuzzy Systems can effectively 
process non-stationary signals, etc. Therefore, choosing a specific system is a non-trivial task and 
usually requires considerable experience of the researcher. 

To overcome the problems of choosing a specific system for a specific task, the ensemble multi-
model bagging approach [1-10] is quite often used, when the task is concurrently solved using an 
ensemble of systems functioning in parallel. Their output signals are somehow combined using a so-
called metamodel which forms the optimal result. Usually, weighted averaging is used, where the 
weights are calculated by the metamodel itself. As a rule, these are batch procedures working in 
offline mode, although adaptive linear online approaches are known [4-6, 9, 10] for solving Data 
Stream Mining problems. Non-linear bagging procedures practically do not exist with a few, but still 
offline mode exceptions [2]. 

Therefore, it is expedient to develop an adaptive nonlinear bagging metamodel that would 
combine and generalize the ensemble members' processing results in online mode with high speed 
and accuracy. 
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2. Architecture of the adaptive nonlinear bagging metamodel 

The architecture of the adaptive nonlinear bagging metamodel is shown in Figure 1. 
 

 
Figure 1: Adaptive nonlinear bagging metamodel architecture 

 
It is readily seen that the metamodel’s architecture is similar to F. Rosenblatt's elementary 

perceptron, but instead of a traditional activation function it contains a Nonlinear Synapse (NS) 
which is the main building block of a neo-fuzzy neuron [11-13] and implements the F-transform [14] 
in its adaptive version [15], i.e. it is essentially a universal approximator [16]. 

Output signals from 𝑞 ensemble members which are solving the same problem 

𝑦#!(𝑘), … , 𝑦#"(𝑘), … , 𝑦##(𝑘) (or in a vector form 𝑦#(𝑘) = *𝑦#!(𝑘), … , 𝑦#"(𝑘), … , 𝑦##(𝑘)+
$

, where 𝑘 =
1,2, . . . , 𝑁 is the current discrete time index) are fed to the metamodel’s inputs, then passed through 
adjustable synaptic weights 𝑤!∗, … , 𝑤"∗, … , 𝑤#∗, and finally combined in the adder forming 
metamodel’s intermediate output signal 𝑦#∗(𝑘) in the form 

𝑦#∗(𝑘) = 1𝑤"∗𝑦#"(𝑘)
#

"&!

 (1) 

or in a vector form 

𝑦#∗(𝑘) = 𝑦#$(𝑘)𝑤∗, (2) 

where 𝑤∗ = 2𝑤!∗, … , 𝑤"∗, … , 𝑤#∗3
$ . 

The unbiasedness constraint is additionally imposed on the synaptic weights 𝑤∗ 

1𝑤"∗
#

"&!

= 𝐼#$𝑤∗ = 1  

(here 𝐼#$ is a (𝑞 × 1) vector of ones). If we append inequality constraints on the non-negativity of 
the synaptic weights 0 ≤ 𝑤"∗ ≤ 1, ∀𝑝, these synaptic weights can be given the meaning of the 
degrees of membership of each of the signals 𝑦#"(𝑘) to the optimal result. 

Technically, the signal 𝑦#∗(𝑘) is already the solution of the optimization problem, however it can 
be improved by processing it in an adaptive Nonlinear Synapse (NS). NS is formed by 𝑛 nonlinear 
membership functions 𝜇'2𝑦#∗(𝑘)3, 𝑙 = 1,2, … , 𝑛. Traditional triangular constructions that satisfy the 
Ruspini partition of unity conditions are usually used, although it is possible to use more complex 

𝑤!∗ 𝑦#!(𝑘) 
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variants, e.g. B-splines, Gaussians, Epanechnikov kernels, etc. Each membership function output 
𝜇'2𝑦#∗(𝑘)3 is multiplied by the corresponding adjustable weight 𝑤=' , and then summed in the second 
adder of the metamodel forming the output signal 

𝑦#*(𝑘) =1𝑤='𝜇'2𝑦#∗(𝑘)3
)

'&!

, (3) 

or in a vector form 

𝑦#*(𝑘) = 𝜇$2𝑦#∗(𝑘)3𝑤=, (4) 

where 𝜇2𝑦#∗(𝑘)3 = *𝜇!2𝑦#∗(𝑘)3, … , 𝜇'2𝑦#∗(𝑘)3, … , 𝜇)2𝑦#∗(𝑘)3+
$
, 𝑤= = (𝑤=!, … , 𝑤=' , … , 𝑤=))$ . 

Combining (1)-(4), finally we can write 

𝑦#*(𝑘) =1𝑤='𝜇' >1𝑤"∗𝑦#"(𝑘)
#

"&!

?
)

'&!

,  

or 

𝑦#*(𝑘) = 𝜇$(𝑦#$(𝑘)𝑤∗)𝑤=,  

Where adjusted synaptic weights vectors 𝑤∗ and 𝑤=  are subject to online learning. 

3. Adaptive nonlinear bagging metamodel learning 

Synaptic weights vector 𝑤∗ can be adjusted by gradient optimization of the learning criterion  

𝐸(𝑘) =
1
2>

𝑦(𝑘) −1𝑤"∗𝑦#"(𝑘)
#

"&!

?

(

=
1
2
(𝑦(𝑘) − 𝑦#$(𝑘)𝑤∗)(  

(here 𝑦(𝑘) – external reference signal) subject to constraints 𝐼#$𝑤∗ = 1. It is achieved by searching 
for the saddle point of the Lagrange function 

𝐿(𝑤∗, 𝜆) =
1
2
(𝑦(𝑘) − 𝑦#$(𝑘)𝑤∗)( + 𝜆2𝐼#$𝑤∗ − 1	3,  

where 𝜆 – undefined Lagrange multiplier. 
The Arrow-Hurwiсz procedure can be used to find the saddle point in the following form  

F𝑤
∗(𝑘) = 𝑤∗(𝑘 − 1) − 𝜂+(𝑘)∇+∗𝐿(𝑤∗, 𝜆),

𝜆(𝑘) = 𝜆(𝑘 − 1) + 𝜂,(𝑘) 𝜕𝐿(𝑤∗, 𝜆) 𝜕⁄ 𝜆,   

or 

K
𝑤∗(𝑘) = 𝑤∗(𝑘 − 1) + 𝜂+(𝑘)2𝑒(𝑘)𝑦#(𝑘) − 𝜆(𝑘 − 1)𝐼#3,
𝜆(𝑘) = 𝜆(𝑘 − 1) + 𝜂,(𝑘)2𝐼#$𝑤∗(𝑘) − 13,

 (5) 

where 𝜂+(𝑘), 𝜂,(𝑘) – learning step parameters, 𝑒(𝑘) = 𝑦(𝑘) − 𝑦#$(𝑘)𝑤∗(𝑘 − 1) – learning error. 
It is mathematically proven that signal 𝑦#∗(𝑘) = 𝑦#$(𝑘)𝑤∗(𝑘) in terms of accuracy is not inferior 

to any of 𝑦#"(𝑘), 𝑝 = 1,2, … , 𝑞 at the metamodel input. 



The learning process can be optimized in terms of speed by the appropriate selection of the 
learning step parameter 𝜂+(𝑘). If the following option is chosen 

𝜂+(𝑘) =
𝑒(𝑘)

𝑒(𝑘)‖𝑦#(𝑘)‖( − 𝜆(𝑘 − 1)𝐼#$𝑦#(𝑘)
,  

the learning algorithm (5) can be written in the form 

N
𝑤∗(𝑘) = 𝑤∗(𝑘 − 1) +

𝑒(𝑘)2𝑒(𝑘)𝑦#(𝑘) − 𝜆(𝑘 − 1)𝐼#3
𝑒(𝑘)‖𝑦#(𝑘)‖( − 𝜆(𝑘 − 1)𝐼#$𝑦#(𝑘)

,

𝜆(𝑘) = 𝜆(𝑘 − 1) + 𝜂,(𝑘)2𝐼#$𝑤∗(𝑘) − 13.
 (6) 

When 𝜆(𝑘) = 0, it completely coincides with the adaptive speed-optimal Kaczmarz-Widrow-Hoff 
algorithm [17-20]. 

As noted above, the synaptic weights at the inputs of the metamodel can be given the meaning 
of the degrees of membership of each of the input signals 𝑦#"(𝑘) to the optimal signal, which should 
theoretically coincide with the reference signal 𝑦(𝑘). In this case, the learning task consists in the 
minimization of the criterion 

𝐸(𝑘) =
1
2>

𝑦(𝑘) −1𝑤"
-𝑦#"(𝑘)

#

"&!

?

(

=
1
2
(𝑦(𝑘) − 𝑦#$(𝑘)𝑤-)(  

subject to constraints 

𝐼#$𝑤- = 1, 0 ≤ 𝑤"
- ≤ 1, ∀𝑝.  

Introducing the Lagrange function  

𝐿(𝑤- , 𝜆, 𝜌) =
1
2
(𝑦(𝑘) − 𝑦#$(𝑘)𝑤-)( + 𝜆2𝐼#$𝑤- − 1	3 − 𝜌$𝑤- ,  

(here 𝜌 – vector of non-negative indefinite Lagrange multipliers) and the Kuhn-Tucker system 

P
∇+"𝐿(𝑤- , 𝜆, 𝜌) = 0# ,
𝜕𝐿(𝑤- , 𝜆, 𝜌) 𝜕⁄ 𝜆 = 0,
𝜌" ≥ 0, 𝑝 = 1,2, … , 𝑞,

  

it is easy to write the Arrow-Hurwicz-Uzawa gradient procedure for finding the saddle point of the 
Lagrangian in the form 

P
𝑤-(𝑘) = 𝑤-(𝑘 − 1) − 𝜂+(𝑘)∇+"𝐿(𝑤- , 𝜆, 𝜌),
𝜆(𝑘) = 𝜆(𝑘 − 1) + 𝜂,(𝑘) 𝜕𝐿(𝑤- , 𝜆, 𝜌) 𝜕⁄ 𝜆,
𝜌(𝑘) = R𝜌(𝑘 − 1) − 𝜂.(𝑘)∇.𝐿(𝑤- , 𝜆, 𝜌)S

/

  

(here [∙]/ is the projector on the positive orthant), 
or 

⎩
⎨

⎧𝑤
-(𝑘) = 𝑤-(𝑘 − 1) + 𝜂+(𝑘) *𝑒(𝑘)𝑦#(𝑘) − 𝜆(𝑘 − 1)𝐼# − 𝜌(𝑘 − 1)+ ,

𝜆(𝑘) = 𝜆(𝑘 − 1) + 𝜂,(𝑘)2𝐼#$𝑤-(𝑘) − 13,
𝜌(𝑘) = R𝜌(𝑘 − 1) − 𝜂.(𝑘)𝑤-(𝑘)S

/
.

 (7) 



Similarly to (5) and (6), the learning algorithm (7) can also be optimized for speed. The optimized 
procedure has the following final form 

⎩
⎪
⎨

⎪
⎧𝑤-(𝑘) = 𝑤-(𝑘 − 1) +

𝑒(𝑘) *𝑒(𝑘)𝑦#(𝑘) − 𝜆(𝑘 − 1)𝐼# − 𝜌(𝑘 − 1)+

𝑒(𝑘)‖𝑦#(𝑘)‖( − 𝜆(𝑘 − 1)𝐼#$𝑦#(𝑘) + 𝜌$(𝑘 − 1)𝑦#(𝑘)
,

𝜆(𝑘) = 𝜆(𝑘 − 1) + 𝜂,(𝑘)2𝐼#$𝑤-(𝑘) − 13,
𝜌(𝑘) = R𝜌(𝑘 − 1) − 𝜂.(𝑘)𝑤-(𝑘)S

/
.

 (8) 

Thus, algorithms (6), (8) are designed for online adjustment of metamodel parameters 𝑤∗ or 𝑤- 
and ensure high accuracy of the obtained results. 

As already mentioned, triangular-shaped functions are usually used as membership functions in 
the nonlinear synapse NS: 

𝜇'2𝑦#∗(𝑘)3 =

⎩
⎪
⎨

⎪
⎧
𝑦#∗(𝑘) − 𝑐'0!
𝑐' − 𝑐'0!

,	if	𝑦#∗(𝑘) ∈ [𝑐'0!, 𝑐'],

𝑐'/! − 𝑦#∗(𝑘)
𝑐'/! − 𝑐'

,	if	𝑦#∗(𝑘) ∈ [𝑐' , 𝑐'/!],

0	otherwise,

  

where 𝑐'0!, 𝑐' , 𝑐'/! – parameters of the centers of adjacent membership functions which are usually 
either uniformly distributed over the abscissa axis or can be found using clustering procedures [20, 
21]. 

The main advantage of such functions is that at each learning cycle only two adjacent functions 
are activated and accordingly only two synaptic weights 𝑤='0!, 𝑤=' or 𝑤=' , 𝑤='/!  are adjusted which 
simplifies and speeds up nonlinear synapse tuning process. 

A standard quadratic criterion can be used to tune the nonlinear synapse: 

𝐸f(𝑘) =
1
2
g𝑦(𝑘) −1𝑤='𝜇'2𝑦#∗(𝑘)3

)

'&!

h
(

=
1
2
2𝑦(𝑘) − 𝜇$2𝑦#∗(𝑘)3𝑤=3(,  

which is minimized using a gradient procedure 

𝑤=(𝑘) = 𝑤=(𝑘 − 1) − 𝜂+1 (𝑘) *𝑦(𝑘) − 𝜇$2𝑦#∗(𝑘)3𝑤=(𝑘 − 1)+ 𝜇2𝑦#∗(𝑘)3, (9) 

where the step parameter 𝜂+1 (𝑘) is chosen either using the Kaczmarz-Widrow-Hoff procedure [17, 
19] or using other approaches [22, 23] which provide additional filtering properties of the learning 
process. 

4. Simulation results 

As a test case, we apply the proposed bagging approach to the short-term electric load forecasting 
problem (STLF), specifically 1-step ahead forecasting of daily electric load of one of regional power 
systems of Ukraine. We have the original series with 𝑁 = 337 samples and 𝑞 = 6 forecast series 
(337 samples each) generated by 6 different independent computational intelligence models. We treat 
the time series as a data stream, i.e. forecasting and metamodel operation is performed in online 
mode, therefore the whole dataset is processed only once (sample by sample, 𝑘 = 1,2, . . . , 𝑁) and 
there is no need to divide it into training, validation and test sets. 

The original series (Figure 2) has several trends corresponding to different seasons, periodic 
(mostly weekly) patterns, sudden changes and outliers. Obviously, there is a strong random 
component, because electric load in large systems depends on many external factors, some of which 
have true random or chaotic nature, e.g. weather conditions [24]. So, the time series is nonstationary 



and noisy by its nature, hence its forecasting is quite challenging and usually different forecasting 
models/methods perform better than others on particular parts of the series and are inferior on other 
parts. One model/method is rarely better than all others on the whole series. It is exactly the case 
when bagging methods come into play and can improve overall forecasting accuracy attempting to 
take the best from all models/methods in the ensemble. 
 

 
Figure 2: Daily electric load time series 

 
We employ 6 specialized STLF models in the ensemble that have different inputs and structures. 

Such a diversity is aimed at capturing different properties of different parts of the series under 
consideration. Figure 3 shows last 30 days of the time series with the corresponding forecasts. We 
can see that long-term trends are more or less well captured by all models, but short-term changes 
pose a problem to all of them so that no single model is significantly better than the others. 

 

 
Figure 3: Forecasting results: true electric load (solid black line), 6 independent 1-day ahead forecasts 
(color lines), two metamodel forecasts: 𝑦#∗(𝑘) (dotted black line), 𝑦#*(𝑘) (dashed black line). 

 
We apply model (2) with algorithm (6) to obtain an optimal linear combination 𝑦#∗(𝑘) of the 6 

forecasts from the ensemble member models. Just by a visual inspection of the plot it is obvious that 
𝑦#∗(𝑘) is generally closer to the true series 𝑦(𝑘), which is also confirmed by corresponding errors 
comparison in Table 1. We employ Mean Absolute Percentage Error (MAPE) criterion that is widely 
used in short-term electric load forecasting research and has a clear physical sense. 

 
 
 
 



Table 1 
1-day ahead forecasting errors for all models and the ensemble outputs 

Models #1 #2 #3 #4 #5 #6 𝑦#∗(𝑘) 𝑦#*(𝑘) 
MAPE 6.8171% 7.5066% 4.8580% 5.0311% 4.8827% 5.1015% 4.1440% 3.9595% 

 
The best of ensemble member models provides MAPE of 4.858%, which is reduced to 4.144% by 

the linear bagging procedure. Then we additionally apply to 𝑦#∗(𝑘) the adaptive F-transform (4) in 
order to exploit any possible remaining nonlinearities which cannot be approximated by the linear 
model (2). In this simple test case, the nonlinear synapse has 10 triangular membership functions 
𝜇'2𝑦#∗(𝑘)3 whose centers 𝑐' are uniformly distributed between the minimum and maximum values 
of the time series 𝑦(𝑘). NS parameters 𝑤=(𝑘) are tuned by procedure (9). This additional nonlinear 
processing step further reduces the bagging error to 3.9595%, which is 1.23 times less than the lowest 
error provided by the best ensemble member alone. 

The aforementioned processing steps can be summarized as a pseudo-code below. 
 

Algorithm 1 
Adaptive nonlinear bagging procedure performed on each time step 𝒌 
Step 1. Receive input signals from 𝑞 ensemble members 𝑦#!(𝑘), … , 𝑦##(𝑘). 
Step 2. Calculate the intermediate output signal 𝑦#∗(𝑘) as a linear combination of inputs (2). 
Step 3. Apply adaptive F-transform (4) to obtain the output signal 𝑦#*(𝑘). 
Step 4. Update weights 𝑤∗(𝑘) using learning algorithm (6). 
Step 5. Update NS parameters w ̃(k) with procedure (9). 

5. Conclusions 

A fuzzy nonlinear online bagging procedure is proposed. It provides optimal results of the ensemble 
of computational intelligence systems for solving Data Stream Mining problems when the data are 
received for processing in real time and are non-stationary in nature. The proposed approach has a 
simple numerical implementation and high processing rate.  

Simulations confirm theoretical results. Optimal linear combination provides errors lower than 
the lowest error among the ensemble member models. Nonlinear F-transform provides additional 
decrease of the error, overall by 1.23 times in comparison to the best model in the ensemble. 

Future research on the topic would focus on fine tuning of the nonlinear synapse parameters 
(membership function types, their centers initialization and adaptation, etc.) and including other 
types of nonlinearities in the metamodel. 
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