
Adaptive piece-wise linear squashing activation function
for deep neural networks

Yevgeniy Bodyanskiy1, Nonna Kulishova1, Mykhailo Petrykin1 and Maxim Kulishov1

1 Kharkiv National University of Radio Electronics, 14 Nauki av., Kharkiv, 61166, Ukraine

Abstract
The work considers the vanishing gradient problem inherent in deep neural networks and limiting their
potential due to the unstable learning process. An adaptive piecewise linear squashing activation
function (APWLSAF) is proposed. This function, on the one hand, will ensure high accuracy of the deep
network, and on the other hand, will make the network learning process stable due to the fact that the
gradient of proposed function does not vanish and, therefore, will not be able to stop the adjusting
network parameters.

Keywords
Activation function, deep neural network, classification, image recognition 1

1. Introduction

For shallow (SNN) and deep neural networks (DNN), a wide range of activation functions are
used. Typically, such functions must guarantee the ability to discriminate between small and large
input signals, as well as provide fast and reliably stable network training. In recent years, many
activation functions have been proposed that best meet these requirements [1]. They can be
divided into several main groups depending on the type of curve, properties of monotonicity,
smoothness, continuity, etc. Adaptive and parametric activation functions are of greatest interest,
since in various works [2 - 6] it was found that the choice of type and parameters of activation
function seriously determine the accuracy of artificial neural networks, regardless of their
architecture and application tasks.

In this regard, parametric adaptive functions have undoubted advantages, since they provide
the ability to customize their form in accordance with a specific architecture and task. The most
famous among adaptive activation functions are the Parametric Rectification Linear Unit PReLU
[7], and a whole family of similar functions: Adaptive Piecewise Linear function APL [8], Adaptive
Activation Function AAF [9], S-shaped ReLU [10], Multi-bin Trainable Linear Unit MTLU [11],
Swish [12].

The adaptability of the mentioned and other activation functions can be controlled thanks to
their piecewise structure. Most often, such functions are a construction where fragments of both
linear and nonlinear functions can be connected in series [13, 14, 1]: ABReLU, AdPReLU CELU,
CReLU, ELU, LReLU, MeLU, PDELU, PELU, pTanh, PTELU, RePU, SELU, S.L.U. The goal of each such
structure is creation of a certain curve shape to describe the dependence of neuron output
parameters from input ones. Among the proposed activation functions there are sigmoidal, linear,
and exponential dependencies. In shallow and deep neural networks, different activation
functions are used for different types of network layers (input, output, intermediate) and they
are selected manually or by default.

ProfIT AI 2024: 4th International Workshop of IT-professionals on Artificial Intelligence (ProfIT AI 2023), September
25–27, 2024, Cambridge, MA, USA

 yevgeniy.bodyanskiy@nure.ua (Ye. Bodyanskiy); nonna.kulishova@nure.ua (N. Kulishova);
mykhailo.petrykin@nure.ua (M. Petrykin); absolutezero@i.ua (M. Kulishov)

 0000-0001-5418-2143 (Ye. Bodyanskiy); 0000-0003-1142-4100 (N. Kulishova); 0009-0006-5983-8950 (M.
Petrykin); 0009-0003-2867-2132 (M. Kulishov)

© 2024 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:yevgeniy.bodyanskiy@nure.ua
mailto:mykhailo.petrykin@nure.ua
http://ceur-ws.org/

The sheer number of existing adaptive activation functions suggests that in each task,
researchers choose the type of function based on subjective ideas about how well it will provide
the desired level of result. If the function was not chosen very well, then adjusting its parameters
during network training will only slightly improve the situation, but not radically change it. For
many tasks, especially those related to big data, processing online data streams, etc. it is not
always possible to select the most appropriate activation functions type for individual layers of a
deep network during a sequence of experiments, which ultimately makes the result quality
dependent on the developer experience and intuition. Thus, it is necessary to construct an
activation function that will allow a complete change in its form during network training, and will
ensure high accuracy and speed of learning.

This work proposes a parametric adaptive piecewise linear activation function, which can
change shape from sigmoidal to linear, and an algorithm for its training.

2. Piece-wise linear squashing activation function

Modern commercial applications designed, for example, for classification, object recognition in
video, and performance prediction, are based on use of shallow and deep feedforward networks.
Their architectures can be considered as multilayer perceptrons, which have been known for a
long time [15]. The nature of transformation performed by a neural network as a model depends
on activation function of neurons in its composition.

Among the squashing activation functions used in traditional shallow and deep neural
networks, and satisfy the conditions of Cybenko's approximation theorem [16], the hyperbolic
tangent function has become the most widespread

𝑦𝑦�𝑗𝑗(𝑘𝑘) = 𝜓𝜓𝑗𝑗 �𝜃𝜃𝑗𝑗0 + �𝑤𝑤𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖(𝑘𝑘)
𝑛𝑛

𝑖𝑖=1

� = 𝜓𝜓𝑗𝑗 ��𝑤𝑤𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖(𝑘𝑘)
𝑛𝑛

𝑖𝑖=0

� =

= 𝜓𝜓𝑗𝑗 �𝑤𝑤𝑗𝑗𝑇𝑇𝑥𝑥(𝑘𝑘)� = 𝜓𝜓𝑗𝑗 �𝑢𝑢𝑗𝑗(𝑘𝑘)� = tanh�𝛾𝛾𝑗𝑗𝑢𝑢𝑗𝑗(𝑘𝑘)� =
1− 𝑒𝑒−2𝛾𝛾𝑗𝑗𝑢𝑢𝑗𝑗(𝑘𝑘)

1 + 𝑒𝑒−2𝛾𝛾𝑗𝑗𝑢𝑢𝑗𝑗(𝑘𝑘)

(1)

where 𝑦𝑦�𝑗𝑗(𝑘𝑘) - j-th SNN neuron output signal at the moment of discrete time k = 1, 2,…, n, 𝜓𝜓𝑗𝑗(∙)-
nonlinear activation function of this neuron, 𝜃𝜃𝑗𝑗0 - bias term, n is the number of inputs to j-th
neuron, 𝑤𝑤𝑖𝑖𝑖𝑖- tuned synaptic weight on i-th input of j-th neuron, 𝑥𝑥𝑖𝑖(𝑘𝑘) - input signal on i-th input
of j-th neuron at k-th moment of current time, 𝜃𝜃𝑗𝑗0 ≡ 𝑤𝑤𝑗𝑗0 , 𝑥𝑥(𝑘𝑘) = �1, 𝑥𝑥1(𝑘𝑘), . . . , 𝑥𝑥𝑖𝑖(𝑘𝑘), . . . , 𝑥𝑥𝑛𝑛(𝑘𝑘)�𝑇𝑇 -
(𝑛𝑛 + 1) × 1 - input vector, 𝑤𝑤𝑗𝑗 = �𝑤𝑤𝑗𝑗0 ,𝑤𝑤𝑗𝑗1 , . . . ,𝑤𝑤𝑗𝑗𝑗𝑗 , . . . ,𝑤𝑤𝑗𝑗𝑗𝑗�

𝑇𝑇
- (𝑛𝑛 + 1) × 1 - vector of adjustable

synaptic weights, 𝑢𝑢𝑗𝑗(𝑘𝑘) - a signal of internal activation of j-th neuron, 𝛾𝛾𝑗𝑗 - gain parameter, which
determines the form of this activation function.

Derivative of this feature used in gradient tuning process of neuron looks like
𝜓𝜓ʹ�𝑢𝑢𝑗𝑗� =

𝜕𝜕𝜓𝜓�𝑢𝑢𝑗𝑗�
𝜕𝜕𝑢𝑢𝑗𝑗

= 𝛾𝛾𝑗𝑗 �1− �𝑇𝑇𝑇𝑇𝑇𝑇ℎ�𝛾𝛾𝑗𝑗𝑢𝑢𝑗𝑗��
2� = 𝛾𝛾𝑗𝑗�1− 𝑦𝑦�𝑗𝑗2�, (2)

from where it follows that when output signal approach the values ±1 the derivative goes to
zero, that is, learning process stops due to the so-called "vanishing gradient” effect.

It is interesting to see that to Cybenko theorem conditions also corresponds the adaptive-
linear function Satlin

𝜓𝜓𝑗𝑗 �𝑢𝑢𝑗𝑗(𝑘𝑘)� = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 �𝑢𝑢𝑗𝑗(𝑘𝑘)� = �
−1, 𝑢𝑢𝑗𝑗(𝑘𝑘) < −1

𝑢𝑢𝑗𝑗(𝑘𝑘), − 1 ≤ 𝑢𝑢𝑗𝑗(𝑘𝑘) ≤ 1
1, 𝑢𝑢𝑗𝑗(𝑘𝑘) > 1

 (3)

the derivatives of which take zero value when output of internal activation signal goes out of
bounds of interval [-1, 1]. Therefore, Satlin is not used at all in gradient learning of neural
networks.

It is the vanishing gradient effect that has led to the fact that in DNN squashing activation
functions are not used at all, and the most widespread are piece-wise linear functions of ReLU
type:

𝜓𝜓𝑗𝑗 �𝑢𝑢𝑗𝑗(𝑘𝑘)� = Re L U �𝑢𝑢𝑗𝑗(𝑘𝑘)� = 𝑚𝑚𝑚𝑚𝑚𝑚 �0,𝑢𝑢𝑗𝑗(𝑘𝑘)� = �𝑢𝑢𝑗𝑗
(𝑘𝑘),𝑢𝑢𝑗𝑗(𝑘𝑘) ≥ 0

0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 (4)

or PreLU:

𝜓𝜓𝑗𝑗 �𝑢𝑢𝑗𝑗(𝑘𝑘)� = PRe L U �𝑢𝑢𝑗𝑗(𝑘𝑘)� = 𝑚𝑚𝑚𝑚𝑚𝑚 �0,𝑢𝑢𝑗𝑗(𝑘𝑘)� =
() ()
()

, 0
,0 1,

j j

j

u k u k
au k a otherwise

≥=  < <
 (5)

The advantage of these functions is simplicity of their derivative, which facilitates the learning
process.

Since these functions do not satisfy approximation theorem conditions, number of neurons
and layers is significantly increased to ensure the required quality in DNN, which leads, first, to a
significant reduction of learning rate, and secondly, it requires an increase training data number
which are not always available when solving real practical problems.

Therefore, it is advisable to introduce an activation piece-wise linear function, which will have
simple derivative, is close enough to squashing functions with their approximation properties,
and does not suffer from the effect of "vanishing gradient".

As such a function is offered a formulation of Adaptive Piece-Wise Linear Squashing Activation
Function (APWLSAF)

𝜓𝜓𝑗𝑗 �𝑢𝑢𝑗𝑗(𝑘𝑘)� =

⎩
⎪
⎨

⎪
⎧ 𝑢𝑢𝑗𝑗(𝑘𝑘), -1 ≤ 𝑢𝑢𝑗𝑗(𝑘𝑘) ≤ 1

1 − 𝑎𝑎𝑗𝑗𝑅𝑅 �1 − 𝑢𝑢𝑗𝑗(𝑘𝑘)� , 𝑢𝑢𝑗𝑗(𝑘𝑘) > 1

𝑎𝑎𝑗𝑗𝐿𝐿 �1 + 𝑢𝑢𝑗𝑗(𝑘𝑘)� − 1, 𝑢𝑢𝑗𝑗(𝑘𝑘) < −1

. (6)

Its graph is shown in Figure 1.

Figure 1: Adaptive Piece-Wise Linear Squashing Activation Function (APWLSAF)

It is easy to see that when 𝑎𝑎0𝑗𝑗𝑅𝑅 = 𝑎𝑎0𝑗𝑗𝐿𝐿 = 0 APWLSAF is converted to Satlin, and when 𝑎𝑎𝑗𝑗𝑅𝑅 = 𝑎𝑎𝑗𝑗𝐿𝐿 =

0 we get an elementary linear function ALA (Adaptive Linear Associator). This activation function
is characterized by the simplicity of its derivatives:

𝜕𝜕𝜓𝜓𝑗𝑗�𝑢𝑢𝑗𝑗�
𝜕𝜕𝑢𝑢𝑗𝑗

= �
1, -1 ≤ 𝑢𝑢𝑗𝑗(𝑘𝑘) ≤ 1
𝑎𝑎𝑗𝑗𝑅𝑅 , 𝑢𝑢𝑗𝑗(𝑘𝑘) > 1
𝑎𝑎𝑗𝑗𝐿𝐿 , 𝑢𝑢𝑗𝑗(𝑘𝑘) < −1

, �

𝜕𝜕𝜓𝜓𝑗𝑗�𝑢𝑢𝑗𝑗�
𝜕𝜕𝑎𝑎𝑗𝑗

𝑅𝑅 = 1 − 𝑢𝑢𝑗𝑗 ,

𝜕𝜕𝜓𝜓𝑗𝑗�𝑢𝑢𝑗𝑗�
𝜕𝜕𝑎𝑎𝑗𝑗

𝐿𝐿 = 1 + 𝑢𝑢𝑗𝑗
 (7)

and, if you set additional limitations 𝑎𝑎𝑗𝑗𝑅𝑅 ≥ 𝜀𝜀, 𝑎𝑎𝑗𝑗𝐿𝐿 ≥ 𝜀𝜀, it is protected from the effect of the
"vanishing gradient" inherent in Satlin.

APWLSAF-based neural network approximation properties can be improved if we not only set
up synaptic weights 𝑤𝑤𝑖𝑖𝑖𝑖 in the learning process, but also tune the parameters of activation
functions 𝑎𝑎𝑗𝑗𝑅𝑅 and 𝑎𝑎𝑗𝑗𝐿𝐿 .

3. Adaptive neuron parameters training with APWLSAF

The process of adjusting each neuron in network is implemented by minimizing the accepted
criterion of learning 𝐸𝐸𝑗𝑗(𝑘𝑘), most often quadratic, with the help of so-called δ-rule, which is
essentially a procedure of gradient optimization 𝐸𝐸𝑗𝑗(𝑘𝑘) on tuned synaptic weights 𝑤𝑤𝑖𝑖𝑖𝑖 .

-3 -2 -1 0 1 2 3

u

-2

-1

0

1

2

AP
W

LS
AF

(u
)

Therefore, if training criterion is used as

Е𝑗𝑗(𝑘𝑘) =
1
2
�𝑦𝑦𝑗𝑗(𝑘𝑘) − 𝑦𝑦�𝑗𝑗(𝑘𝑘)�

2
=

1
2
е𝑗𝑗2(𝑘𝑘) =

1
2
�𝑦𝑦𝑗𝑗(𝑘𝑘) − 𝜓𝜓𝑗𝑗 �𝑢𝑢𝑗𝑗(𝑘𝑘)��

2
=

=
1
2
�𝑦𝑦𝑗𝑗(𝑘𝑘) −𝜓𝜓𝑗𝑗 ��𝑤𝑤𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖(𝑘𝑘)

𝑛𝑛

𝑖𝑖=1

��

2

=
1
2
�𝑦𝑦𝑗𝑗(𝑘𝑘) − 𝜓𝜓𝑗𝑗 �𝑤𝑤𝑗𝑗𝑇𝑇𝑥𝑥(𝑘𝑘)��

2

(8)

(here 𝑦𝑦𝑗𝑗(𝑘𝑘)- external learning signal), then the procedure for optimizing learning will look like:

𝑤𝑤𝑖𝑖𝑖𝑖(𝑘𝑘) = 𝑤𝑤𝑖𝑖𝑖𝑖(𝑘𝑘 − 1) − 𝜂𝜂(𝑘𝑘)
𝜕𝜕Е𝑗𝑗(𝑘𝑘)
𝜕𝜕е𝑗𝑗(𝑘𝑘)

𝜕𝜕е𝑗𝑗(𝑘𝑘)
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

= 𝑤𝑤𝑖𝑖𝑖𝑖(𝑘𝑘 − 1) − 𝜂𝜂(𝑘𝑘)е𝑗𝑗(𝑘𝑘)
𝜕𝜕е𝑗𝑗(𝑘𝑘)
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

=

= 𝑤𝑤𝑖𝑖𝑖𝑖(𝑘𝑘 − 1) − 𝜂𝜂(𝑘𝑘)е𝑗𝑗(𝑘𝑘)
𝜕𝜕е𝑗𝑗(𝑘𝑘)
𝜕𝜕𝑢𝑢𝑗𝑗(𝑘𝑘)

𝜕𝜕𝑢𝑢𝑗𝑗(𝑘𝑘)
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

= 𝑤𝑤𝑖𝑖𝑖𝑖(𝑘𝑘 − 1) + 𝜂𝜂(𝑘𝑘)е𝑗𝑗(𝑘𝑘)𝜓𝜓𝑗𝑗′ �𝑢𝑢𝑗𝑗(𝑘𝑘)� 𝑥𝑥𝑖𝑖(𝑘𝑘) =

= 𝑤𝑤𝑖𝑖𝑖𝑖(𝑘𝑘 − 1) + 𝜂𝜂(𝑘𝑘)𝛿𝛿𝑗𝑗(𝑘𝑘)𝑥𝑥(𝑘𝑘)

(9)

or in a vector form:
𝒘𝒘𝑗𝑗(𝑘𝑘) = 𝒘𝒘𝑗𝑗(𝑘𝑘 − 1) + 𝜼𝜼(𝑘𝑘)𝜹𝜹𝑗𝑗(𝑘𝑘)𝒙𝒙(𝑘𝑘) (10)

where 𝜹𝜹𝑗𝑗(𝑘𝑘) - the so-called δ-error; 𝜼𝜼(𝑘𝑘) is a search step parameter that is selected from one
or another consideration.

For our case, the learning algorithm can be recorded in a sufficiently simpler form:

𝒘𝒘𝑗𝑗(𝑘𝑘) = �
𝒘𝒘𝑗𝑗(𝑘𝑘 − 1) + 𝜼𝜼(𝑘𝑘)е𝑗𝑗(𝑘𝑘)𝒙𝒙(𝑘𝑘), − 1 ≤ u𝑗𝑗(𝑘𝑘) ≤ 1
𝒘𝒘𝑗𝑗(𝑘𝑘 − 1) + 𝜼𝜼(𝑘𝑘)е𝑗𝑗(𝑘𝑘)𝑎𝑎𝑗𝑗𝑅𝑅𝒙𝒙(𝑘𝑘), u𝑗𝑗(𝑘𝑘) > 1
𝒘𝒘𝑗𝑗(𝑘𝑘 − 1) + 𝜼𝜼(𝑘𝑘)е𝑗𝑗(𝑘𝑘)𝑎𝑎𝑗𝑗𝐿𝐿𝒙𝒙(𝑘𝑘), u𝑗𝑗(𝑘𝑘) < −1

 (11)

or

𝒘𝒘𝑗𝑗(𝑘𝑘) = �
 𝒘𝒘𝑗𝑗(𝑘𝑘 − 1) + 𝜼𝜼(𝑘𝑘)е𝑗𝑗(𝑘𝑘)𝒙𝒙(𝑘𝑘), − 1 ≤ u𝑗𝑗(𝑘𝑘) ≤ 1
𝒘𝒘𝑗𝑗(𝑘𝑘 − 1) + 𝜼𝜼(𝑘𝑘)е𝑗𝑗(𝑘𝑘)𝒙𝒙𝑅𝑅(𝑘𝑘), u𝑗𝑗(𝑘𝑘) > 1
𝒘𝒘𝑗𝑗(𝑘𝑘 − 1) + 𝜼𝜼(𝑘𝑘)е𝑗𝑗(𝑘𝑘)𝒙𝒙𝐿𝐿(𝑘𝑘), u𝑗𝑗(𝑘𝑘) < −1

 (12)

where 𝒙𝒙𝑅𝑅(𝑘𝑘) = 𝑎𝑎𝑗𝑗𝑅𝑅𝒙𝒙(𝑘𝑘),𝒙𝒙𝐿𝐿(𝑘𝑘) = 𝑎𝑎𝑗𝑗𝐿𝐿𝒙𝒙(𝑘𝑘).
The learning process can be optimized by performance by using a modified Kaczmarz-

Widrow-Hoff algorithm [17, 18] in the form of

𝒘𝒘𝑗𝑗(𝑘𝑘) =

⎩
⎪⎪
⎨

⎪⎪
⎧𝒘𝒘𝑗𝑗(𝑘𝑘 − 1) +

е𝑗𝑗(𝑘𝑘)𝒙𝒙(𝑘𝑘)
𝛾𝛾 + ‖𝒙𝒙(𝑘𝑘)‖2 , − 1 ≤ u𝑗𝑗(𝑘𝑘) ≤ 1

𝒘𝒘𝑗𝑗(𝑘𝑘 − 1) +
е𝑗𝑗(𝑘𝑘)𝒙𝒙𝑅𝑅(𝑘𝑘)
𝛾𝛾 + ‖𝒙𝒙𝑅𝑅(𝑘𝑘)‖2 , u𝑗𝑗(𝑘𝑘) > 1

𝒘𝒘𝑗𝑗(𝑘𝑘 − 1) +
е𝑗𝑗(𝑘𝑘)𝒙𝒙𝐿𝐿(𝑘𝑘)
𝛾𝛾 + ‖𝒙𝒙𝐿𝐿(𝑘𝑘)‖2 , u𝑗𝑗(𝑘𝑘) < −1

 (13)

where 𝛾𝛾 ≥ 0 is regulatory parameter that protects learning process from zeroing gradient
effect.

It is possible to improve approximate properties of neuron with APWLSAF by adjusting not
only synaptic weights 𝑤𝑤𝑖𝑖𝑖𝑖 , but also parameters of activation function 𝑎𝑎𝑗𝑗𝑅𝑅 and 𝑎𝑎𝑗𝑗𝐿𝐿 , while receiving
the next vector 𝒙𝒙(𝑘𝑘) on neuron inputs, setup 𝑎𝑎𝑗𝑗𝑅𝑅(𝑘𝑘) and 𝑎𝑎𝑗𝑗𝐿𝐿(𝑘𝑘) is first implemented and then the
vector of synaptic weights 𝒘𝒘𝑗𝑗(𝑘𝑘) is refined. That is, the procedure of error backpropagation at
individual neurons level is actually implemented. Note, that

𝑎𝑎𝑗𝑗𝑅𝑅(𝑘𝑘) = 𝑎𝑎𝑗𝑗𝑅𝑅(𝑘𝑘 − 1) + 𝜂𝜂𝑎𝑎(𝑘𝑘)е𝑗𝑗(𝑘𝑘)�𝑢𝑢𝑗𝑗(𝑘𝑘) − 1� =

= 𝑎𝑎𝑗𝑗𝑅𝑅(𝑘𝑘 − 1) + 𝜂𝜂𝑎𝑎(𝑘𝑘) �𝑦𝑦𝑗𝑗(𝑘𝑘) − 𝜓𝜓𝑗𝑗 �𝑤𝑤𝑗𝑗𝑇𝑇(𝑘𝑘 − 1)𝑥𝑥(𝑘𝑘)�� �𝑤𝑤𝑗𝑗𝑇𝑇(𝑘𝑘 − 1)𝑥𝑥(𝑘𝑘) − 1�,
(14)

if и𝑗𝑗(𝑘𝑘) > 1, and
𝑎𝑎𝑗𝑗𝐿𝐿(𝑘𝑘) = 𝑎𝑎𝑗𝑗𝐿𝐿(𝑘𝑘 − 1) + 𝜂𝜂𝑎𝑎(𝑘𝑘)е𝑗𝑗(𝑘𝑘)�𝑢𝑢𝑗𝑗(𝑘𝑘) + 1� =

= 𝑎𝑎𝑗𝑗𝐿𝐿(𝑘𝑘 − 1) + 𝜂𝜂𝑎𝑎(𝑘𝑘) �𝑦𝑦𝑗𝑗(𝑘𝑘) − 𝜓𝜓𝑗𝑗 �𝑤𝑤𝑗𝑗𝑇𝑇(𝑘𝑘 − 1)𝑥𝑥(𝑘𝑘)�� �𝑤𝑤𝑗𝑗𝑇𝑇(𝑘𝑘 − 1)𝑥𝑥(𝑘𝑘) + 1�,
(15)

if и𝑗𝑗(𝑘𝑘) < −1, then

𝒘𝒘𝑗𝑗(𝑘𝑘) =

⎩
⎪
⎨

⎪
⎧𝒘𝒘𝑗𝑗(𝑘𝑘 − 1) +

е𝑗𝑗(𝑘𝑘)𝒙𝒙(𝑘𝑘)

𝛾𝛾+‖𝒙𝒙(𝑘𝑘)‖2 , − 1 ≤ u𝑗𝑗(𝑘𝑘) ≤ 1

𝒘𝒘𝑗𝑗(𝑘𝑘 − 1) +
е𝑗𝑗(𝑘𝑘)𝒙𝒙�𝑅𝑅(𝑘𝑘)

𝛾𝛾+�𝒙𝒙�𝑅𝑅(𝑘𝑘)�2
,𝒙𝒙�𝑅𝑅(𝑘𝑘) = 𝑎𝑎𝑗𝑗𝑅𝑅(𝑘𝑘)𝑥𝑥(𝑘𝑘), u𝑗𝑗(𝑘𝑘) > 1

𝒘𝒘𝑗𝑗(𝑘𝑘 − 1) +
е𝑗𝑗(𝑘𝑘)𝒙𝒙�𝐿𝐿(𝑘𝑘)

𝛾𝛾+�𝒙𝒙�𝐿𝐿(𝑘𝑘)�2
,𝒙𝒙�𝐿𝐿(𝑘𝑘) = 𝑎𝑎𝑗𝑗𝐿𝐿(𝑘𝑘)𝑥𝑥(𝑘𝑘), 𝑢𝑢𝑗𝑗(𝑘𝑘) < −1

. (16)

4. The experiment results

increasing classification accuracy is very important in problems of image recognition and
processing [19 – 22]. An experimental study of the effectiveness of the APWLSAF was carried out
to solve the problem of recognizing people's emotions from photographs. The task remains
relevant for many applications, where result depends on quality of user interaction and taking
into account his emotional status can influence the process [23].

In the experiment some photos from the Extended Cohn-Kanade (CK+) dataset [24] were used.
Picked dataset consisting of 821 images of seven emotion classes: anger (126 photos), disgust (67
photos), fear (111 photos), happy (154 photos), sadness (107 photos), surprise (98 photos) and
neutral (158 photos). Images were scaled and transformed to grayscale. All experiments were
carried out using the TensorFlow framework. Examples of images are shown in Figure 2.

Figure 2: Examples of processed images from Extended Cohn-Kanade (CK+) dataset

Configurable network parameters are changed using standard function ReLU, leakyReLU,
PReLU and APWLSAF. Network architecture and training parameters:

- convolution layer contents 20 filters;
- filter size 5×5;
- training cycle consists of 8 and 12 epochs;
- number of iterations 104 and 156;
- iterations per epochs 13;
- minibatch size 32;
- starting value of learning rate 0.0001;
- validation frequency 30 iterations.
The results of a deep network with different activation functions training are shown in Figures

3-4.
Accuracy of network training with considered activation functions when classifying the

emotions in dataset images is shown in the Table 1.
Table 1
Accuracy of network training with ReLU, leakyReLU, PReLU and APWLS activation functions in
emotion classification by images

Activation function Accuracy (8 learning epochs) Accuracy (12 learning epochs)
ReLU 62.59% 65.09%
leakyReLU(0.6) 69.32% 65.59%
PreLU 67.33% 77.56%
APWLSAF 80.80% 83.29%

a) b)

Figure 3: Results of network training with a) ReLU activation function; b) leakyReLU activation
function

a) b)

Figure 4: Results of network training with a) PReLU activation function; b) APWLSAF

It can be seen that widespread and frequently used activation functions (ReLU, PreLU,
leakyReLU) quickly achieve the highest possible accuracy for the task (in the range of 60-70%).
Increasing the training duration leads to only a slight increase in accuracy. At the same time, the
APWLSAF shows a trend towards increasing accuracy and higher performance (80-85%). Here it
is also important to pay attention to the fact that the training dataset was small, and against this
background, the gain in accuracy of approximately 15%, which is given by the APWLSAF with all
other network parameters unchanged, is an important result. It confirms that the proposed
function allows deep networks to learn complex tasks on small data samples faster and more
accurately.

5. Conclusion

The new adaptive piece-wise linear squashing activation function (APWLSAF) is proposed,
which combines the properties of squashing functions of shallow neural networks (especially
three-layer perceptrons) and piece-wise linear functions in deep neural networks without
suffering from effect a "vanishing" gradient. The neuron tuning algorithm with APWLSAF,
characterized by high speed and ease of numerical implementation, has been introduced. The
results of the computer experiment confirm the effectiveness of proposed approach.

References

[1] S.R. Dubey, S.K. Singh, B.B. Chaudhuri, Activation Functions in Deep Learning: A
Comprehensive Survey and Benchmark, Neurocomputing 503(11) (2022). doi:
10.1016/j.neucom.2022.06.111.

[2] A. Molina, P. Schramowski, K. Kersting, Padé activation units: end-to-end learning of flexible
activation functions in deep networks, arXiv:1907.06732v3 [cs.LG], (2020).

[3] M. Basirat, P.M. Roth, L*ReLU: Piece-wise Linear Activation Functions for Deep Fine-grained
Visual Categorization, in 2020 IEEE Winter Conference on Applications of Computer Vision
(WACV), Snowmass, CO, USA, March 2020. doi: 10.1109/WACV45572.2020.9093485.

[4] Z. Zhu, Y. Zhou, Y. Dong, Z. Zhong, PWLU: Learning Specialized Activation Functions with the
Piecewise Linear Unit, in: IEEE Transactions on Pattern Analysis and Machine
Intelligence (Early Access), pp. 1-19. doi: 10.1109/TPAMI.2023.3286109.

[5] S. Dai, S. Mahloujifar, P. Mittal, Parameterizing Activation Functions for Adversarial
Robustness, in: 2022 IEEE Security and Privacy Workshops (SPW), 2022. doi:
10.1109/SPW54247.2022.9833884.

[6] M. Loni, A. Mohan, M. Asadi, M. Lindauer, Learning Activation Functions for Sparse Neural
Networks, arXiv:2305.10964v2 [cs.LG], (2023).

 [7] Y. Ying, J. Su, P. Shan, L. Miao, X. Wang, S. Peng, “Rectified exponential units for convolutional
neural networks.” IEEE Access 7 (2019): 101633–101640.

[8] F. Agostinelli, M. Hoffman, P. Sadowski, P. Baldi, Learning activation functions to improve deep
neural networks, arXiv:1412.6830v3, available at: www.doi.org/10.48550/arXiv.1412.6830
(2015).

[9] S. Qian, H. Liu, C. Liu, S. Wu, H. San Wong, “Adaptive activation functions in convolutional
neural networks.” Neurocomputing 272 (2018): 204–212.

[10] X. Jin, C. Xu, J. Feng, Y. Wei, J. Xiong, S. Yan, Deep learning with s-shaped rectified linear
activation units, in: AAAI Conference on Artificial Intelligence, 2016.

[11] S. Gu, W. Li, L. V. Gool, R. Timofte, Fast image restoration with multibin trainable linear units,
in: IEEE International Conference on Computer Vision, 2019, pp. 4190–4199.

[12] P. Ramachandran, B. Zoph, Q. V. Le, Searching for activation functions, in: International
Conference on Learning Representations Workshops (2018).

[13] S. Eger, P. Youssef, I. Gurevych, Is it time to swish? Comparing deep learning activation
functions across nlp tasks, arXiv preprint arXiv:1901.02671 (2019).

[14] Ye. Bodyanskiy, A. Deineko, V. Skorik, F. Brodetskyi. “Deep Neural Network with Adaptive
Parametric Rectified Linear Units and its Fast Learning.” International Journal of
Computing 21(1) (2022): 11-18. https://doi.org/10.47839/ijc.21.1.2512

[15] K. Hornik, M. Stinchcombe, H. White, “Multilayer feedforward networks are universal
approximators.” Neural Networks 2.5 (1989): 359 – 366.

[16] G. Cybenko, “Approximation by superposition of a sigmoidal function.” Math. Control Signals
Systems 2 (1989): 303 – 314.

[17] S. Kaczmarz, ”Approximate solution of systems of linear equations”, International Journal of
Control, 57:6, 1993, pp. 1269-1271, doi:10.1080/00207179308934446.

[18] B. Widrow, M. Hoff, ”Adaptive Switching Circuits”, IRE WESCON Convention Record, Part 4,
pp. 96-104. New York IRE.

[19] S. Khlamov, V. Savanevych, Big astronomical datasets and discovery of new celestial bodies
in the Solar System in automated mode by the CoLiTec software, in: Knowledge Discovery in
Big Data from Astronomy and Earth Observation (1st ed., part IV), chapt. 18
Astrogeoinformatics, Elsevier, 2020, pp. 331-345. doi: 10.1016/B978-0-12-819154-
5.00030-8.

[20] V. Savanevych, S. Khlamov, O. Briukhovetskyi, T. Trunova, I. Tabakova, Mathematical
methods for an accurate navigation of the robotic telescopes, in: Mathematics, special issue
Mathematics in Robot Control for Theoretical and Applied Problems, vol. 11 issue 10 (2246),
2023. 19 p. doi: 10.3390/math11102246.

[21] V. E. Savanevych, S. V. Khlamov, V. S. Akhmetov, A. B. Briukhovetskyi, V. P. Vlasenko, E. N.
Dikov, I. Kudzej, P. A. Dubovsky, D. E. Mkrtichian, I. S. Tabakova, T. O. Trunova. “CoLiTecVS
software for the automated reduction of photometric observations in CCD-frames.”
Astronomy and Computing 40 (100605) (2022): 15. doi: 10.1016/j.ascom.2022.100605.

[22] V. Akhmetov, S. Khlamov, V. Khramtsov, A. Dmytrenko. “Astrometric reduction of the wide-
field images.: Advances in Intelligent Systems and Computing IV: Springer Nature
Switzerland 1080 (2020): 896–909. doi: 10.1007/978-3-030-33695-0_58.

[23] N. Kulishova, Emotion Recognition Using Sigma-Pi Neural Network, in: Proceedings of 2016
IEEE First International Conference on Data Stream Mining & Processing (DSMP), Lviv
Ukraine, 2016, pp. 327-331.

[24] P. Lucey, J.F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, I. Matthews, "The Extended Cohn-
Kanade Dataset (CK+): A complete dataset for action unit and emotion-specified expression",
in: Proceedings of IEEE workshop on CVPR for Human Communicative Behavior Analysis,
San Francisco, USA, 2010.

https://www.bibsonomy.org/person/12ace34c5debd5abc08e714f8ff1030b3/author/1

	1. Introduction
	2. Piece-wise linear squashing activation function
	3. Adaptive neuron parameters training with APWLSAF
	4. The experiment results
	5. Conclusion
	References

