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Abstract
Insect identification using camera traps has been neglected due to traditional sensors’ inability to detect
cold-blooded organisms. However, insects are essential for ecosystem services like pollination, making accurate
detection crucial. This study uses advancements in computer vision, specifically convolutional neural networks
(CNNs), to develop an automated insect identification algorithm. High-resolution time-lapse images from
camera traps in the Austrian Alps were annotated and processed with LabelBox and YOLOv8, achieving
order-level insect classification. Results showed a high diversity of insects with a peak mean Average Precision
(mAP) of 54.23% at an Intersection over Union (IoU) threshold of 0.5, indicating the method’s potential for
precise species-level data collection. Despite challenges like background misclassification, the approach offers
a robust framework for insect detection and valuable insights for refinement. YOLO-generated data enable
comprehensive time series analysis, aiding in effective monitoring and management strategies. This study
supports CNN-based methods in ecological monitoring, relevant for pest management and identifying key species.
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1. Introduction

Automatic identification of insects using camera traps has been largely neglected because most camera
trap sensors work based on heat differential between the target animal and the surrounding environment.
Insects, being cold-blooded, largely assume the temperature of their environment; therefore, this heat
differential is negligible. However, insects play a critical role in the environment, and their detection
and classification are crucial for understanding their impact. Recent advancements in computer vision
technology, particularly convolutional neural networks (CNNs), have enabled accurate insect detection
and classification. As a pilot action towards developing an automated insect identification algorithm
supported by the FFG-funded project BioMONITec, we proceeded with a camera trapping design focused
on pollinator insects. We gathered our own images using a time-lapse approach to document insect
visitors on blooming flowers. Images were annotated using the data management platform LabelBox
(LabelBox Inc., San Francisco, CA, USA) and processed for automated recognition through the open-
source program YOLOv8 (Ultralytics Inc., Los Angeles, CA, USA), achieving order-level classification of
insects. This approach aligns with other studies demonstrating the potential of CNNs in agricultural pest
management. For instance, [1] showed that YOLO architectures, including YOLOv5, could effectively
detect and identify insect pests with high precision, which is essential for reducing pesticide use and
promoting spot spraying. Furthermore, [2] employed Faster R-CNN with inception ResNet v2 to detect
and count pests in greenhouse tomato crops, achieving strong correlations between network detections
and human observations. These studies highlight the importance of monitoring pests and the potential
of deep learning to automate this process, making it more efficient and accurate. The integration of AI
and automation in agriculture, including computer vision and other remote monitoring technologies,
offers promising solutions for integrated pest management. Despite challenges such as detecting small
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insects and improving real-time detection accuracy, advancements in CNN-based methods are paving
the way for broader applications, including the identification of economically and medically important
species like pollinators and mosquitoes.

2. Materials and Methods

Our four-phase methodology included data acquisition, annotation, YOLOv8 training/validation and
post processing. During the data acquisition phase, high-resolution camera traps are utilized to capture
insects. Subsequently, the annotation phase involved annotating the acquired images using the LabelBox
platform. Then, the output from the previous phases, comprising of the images and their corresponding
labels, was fed into YOLO for training and validation purposes. The objective of this phase was to assess
the efficacy of AI in detecting and accurately classifying insects. The last phase was the post-processing
of AI detections where we performed a time series analysis to plot the occurrences of different insect
types for a particular dataset.

2.1. Data acquisition and study sites

Waterproof outdoor digital cameras (WG-70, Ricoh Co., Ltd., Tokyo, Japan) were installed in Weinitzen
and Sittersdorf (Carinthia), and St. Margarethen im Lungau (Salzburg) using tripods (Joby GorillaPod
1K, Vivendum Plc, Richmond, UK). Cameras targeted 10 blooming annual plant species over 13 dates
( Table 1). Plant species had a range of flower colors and phenology. These factors were assumed to
impact the different types of insects over the season. Cameras utilized a macro setting at the highest
photo quality (16MP) and were programmed to trigger at 30- to 45-second intervals. Devices exposed
to intense sunlight occasionally shut down due to overheating, thus impacting the planned schedule of
time lapse photo capture.

Table 1
Summary statistics on the number of images taken at specific host plants at the three study sites.

Camera Date Location Host Start time End time Photos taken
1 09-May St. Margarethen Borago officinalis 09:50 19:19 1116
2 09-May St. Margarethen Borago officinalis 09:52 19:20 1116
3 26-Jun Sittersdorf Achillea millefolium 05:06 20:03 1001
4 26-Jun Sittersdorf Achillea millefolium 05:12 20:06 1001
5 26-Jun Sittersdorf Borago officinalis 05:06 20:03 1001
6 02-Jul St. Margarethen Inula helenium 07:51 16:11 666
1 03-Jul St. Margarethen Filipendula ulmaria 07:54 20:23 1000
5 03-Jul Sittersdorf Achillea millefolium 09:39 17:59 1000
6 09-Jul St. Margarethen Inula helenium 09:02 17:21 1000
7 10-Jul St. Margarethen Inula helenium 07:06 15:35 640
8 13-Jul Weinitzen Dianthus carthusianorum 09:06 21:35 1000
9 13-Jul Weinitzen Knautia arvensis 09:29 21:58 1000
1 17-Jul St. Margarethen Inula helenium 10:54 19:14 1000
6 17-Jul St. Margarethen Filipendula ulmaria 10:52 19:11 1000
7 17-Jul St. Margarethen Inula helenium 10:57 19:16 1000
10 17-Jul St. Margarethen Hypericum perforatum 11:01 19:20 1000
8 19-Jul Weinitzen Tragopogon pratensis 09:34 19:17 1000
9 20-Jul Weinitzen Oreoselinum majus 08:05 20:34 1000
9 27-Jul Weinitzen Prunella grandiflora 07:04 19:33 1000
8 02-Aug Weinitzen Oreoselinum majus 09:24 19:07 1000
3 09-Aug Weinitzen Oreoselinum majus 09:50 19:32 1000
5 09-Aug Weinitzen Oreoselinum majus 09:50 19:32 1000
Total 24,280*



2.2. Image Annotation with LabelBox

In the current study, all visible parts of individual insects were fitted as tightly as possible within
corresponding annotated bounding box. LabelBox was used as the annotation program that fed into
YOLOv8 analysis. The process of drawing a bounding box is simply to click-and-drag over the object
of interest. There are several important features that contribute to a good annotation in LabelBox,
specifically in the context of bounding boxes. A good bounding box annotation should accurately
capture the entire object of interest, without cutting off any parts or leaving out any areas. This is
important for downstream tasks like object recognition and classification, as well as for visualizing the
annotated objects. Additionally, a good annotation should have a clear and appropriate ratio of object
to background. The bounding box should tightly surround the object of interest, while minimizing the
inclusion of unnecessary background elements that can interfere with object recognition or classification.
Furthermore, a good annotation should be consistent across all instances of a given object, as well as
accurate in terms of location and size. Consistency is important for training machine learning models, as
it helps to ensure that the model is able to recognize the same object across different images. Accuracy
is crucial for ensuring that the annotated data is of high quality and can be used for downstream
tasks with confidence. The data were converted in a pre-processing step into x-y coordinates with
a calculated width and height of each object and saved as a small .txt file. Annotations were then
coded, where each unique classification was assigned a number. Numbers corresponded to a mapping
function where the classification was designated to an order of insect. Next, the annotations were
randomly divided into ‘training’ and ‘validation’ data sets. To address the class imbalance and potential
overfitting, we implemented a stratified random sampling technique for the train-validation split. This
approach ensured that each insect class (Chelicerata, Coleoptera, Diptera, Hemiptera, Hymenoptera, and
Lepidoptera) was represented proportionally in both sets. While we aimed to mitigate the imbalance,
particularly between Diptera and Hemiptera, we acknowledge that the initial disparity might have
persisted to some extent due to the nature of the data. For instance, multiple insect classes, especially
Diptera, can often appear within the same image, making perfect class balance challenging. While
the stratified sampling strategy helped to alleviate the impact of class imbalance to some extent, it’s
important to note that the model’s performance might still be influenced by the inherent limitations of
the dataset, particularly regarding underrepresented classes. The actual counts used in both training
and validation are shown (Table 2).

Table 2
Training and validation sets sizes used in the study.

Order Training count Validation count Total count
Helicerata 216 32 248
Coleoptera 261 43 304
Diptera 2874 523 3397
Hemiptera 200 37 237
Hymenoptera 343 64 307
Lepidoptera 215 31 246

3. Results

3.1. YOLOv8

YOLO v8 was used in the pilot action. YOLO is an open-source object detection algorithm created by
[3] that can be modified and customized by developers to suit their specific needs. It takes a single pass
over an image and can detect multiple objects at once. It uses a neural network that is trained on a large
data set of labelled images, and it breaks down the image into a grid of cells. Each cell is responsible for
predicting bounding boxes which are then classified into the categories of objects found in the dataset.



YOLO can accurately detect objects in an image even when the object is partially occluded. The model
was trained for 100 epochs, peaking at epoch 88 with 54.23% mAP50 (Figure 1)

Figure 1: Training process progress with mAP50 saturates at epoch 88.

The validation process involves evaluating the model on the validation set and computing how
close was the model predictions to the ground truth. The validation process is represented in the
form of a confusion matrix (Figure 2). Each cell in the confusion matrix is bounded by a color-coded
border to represent different aspects of the model’s performance. The matrix is organized based on
normalized numbers related to the Ground Truth count of classes in the validation set. Green cells signify
true positives, yellow cells indicate true negatives or misclassification, red cells represent undetected
instances, and black cells denote background misclassified as insects. This confusion matrix offers a
detailed breakdown of the model’s detection and classification outcomes, providing valuable insights
into its strengths and areas requiring improvement. Some examples of correctly classified insects are
provided (Figure 3).

3.2. Time Series Analysis

The analysis processes detection text files generated by YOLO, organizing the information into a table
grouped by time detected and insect taxonomy. Subsequently, charts are generated to illustrate the
frequency of insect sightings for each species at different times of the day (Figure 4). This chart serves
as a tool for understanding when various types of insects are most active, contributing valuable insights
for insect monitoring and management strategies.

4. Discussion and Conclusion

Camera trapping for automated identification of insects is in its infancy, although some promising case
studies exist (e.g., [4]). Our study made significant strides towards advancing this goal, but much work
remains. Our results show an impressive diversity of insects in a narrow window of time, considering
only a single season of effort. We found a method to gather highly precise species-level data, allowing
researchers and museum curators to showcase the recovered species to a wider audience in multiple
ways. The well-defined data annotation process in LabelBox is a key contributor to the pipeline, ensuring
the model is trained on accurately labelled data and promoting precise object detection. At the current
status, while YOLO demonstrated a baseline level of performance in detecting and classifying insects,
the achieved mean Average Precision (mAP) of 50% indicates room for improvement. The confusion



Figure 2: Confusion matrix. Green (Correct classification), Yellow (Misclassified), Red (Undetected), Black
(Background detected as insects)

Figure 3: Visual results sample. a) Lepidoptera; b) Diptera.

matrix further highlights specific areas where the model struggled to differentiate between certain insect
classes. It involves pre-processing to split the data into training and validation sets, training to minimize
the loss function, and evaluation to assess performance. YOLOv8’s advantages include quick detection
and classification, flexibility, adaptability, and lightweight architecture. However, the model’s tendency
to detect background elements as insects, especially in complex backgrounds, highlights a challenge
that needs fine-tuning in future iterations. Addressing this issue could enhance the model’s precision
and reliability. The structured data generated by YOLO allow for comprehensive time series analysis of
temporal patterns in insect detection, providing insights into the temporal behavior of different species
and aiding in developing informed monitoring and management strategies. In conclusion, the successful
YOLO upgrade, effective data processing pipeline, and well-defined annotation process contribute to a
robust framework for insect detection. The results allow for meaningful time series analysis and provide
valuable insights for ongoing improvements to address challenges such as background detection. This
ongoing refinement ensures that the model remains a powerful tool for accurate and insightful insect



Figure 4: Bar chart time series analysis of the insect dataset.

monitoring and management.

5. Outlook

For the next steps, we plan to complete the annotation phase in LabelBox to fully incorporate the
data into the model. Following this, we will initiate the training and evaluation process. Throughout
these stages, we will regularly monitor the model’s performance, making any necessary updates and
adjustments. Once these steps are successfully completed, we aim to deploy the model in a practical
application for real-world use.
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