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Abstract

Despite the impressive adaptability of large language models (LLMs), challenges remain in ensuring
their security, transparency, and interpretability. Given their susceptibility to adversarial attacks, LLMs
need to be defended with an evolving combination of adversarial training and guardrails. However,
managing the implicit and heterogeneous knowledge for continuously assuring robustness is difficult.
We introduce a novel approach for assurance of the adversarial robustness of LLMs based on formal
argumentation. Using ontologies for formalization, we structure state-of-the-art attacks and defenses,
facilitating the creation of a human-readable assurance case, and a machine-readable representation. We
demonstrate its application with examples in English language and code translation tasks, and provide
implications for theory and practice, by targeting engineers, data scientists, users, and auditors.
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1. Introduction

Large language models (LLMs) have shown promise in various natural and domain-specific
language tasks [1, 2], even without further training [3]. However, challenges hinder their
trustworthiness [4], as LLMs have an inscrutable structure and dynamicity that make them
a moving target for safety and security research [5]. In particular, they are brittle against
adversarial attacks; slight perturbations in the input can cause a model to provide malicious
output [6], and guardrails can often only be introduced post-incident [7].

Given the novelty and fast-paced evolution of LLMs, engineers need to rely on preprints
and experiments (cf. [8]) to analyse the impact of novel attacks and envision suitable defenses.
Unlike software security, for which maintained knowledge bases exist (e.g. Common Vulnera-
bility Enumerations [9]), no such process is established for LLMs. Consequently, the required
knowledge is captured in the data, code, documentation, and brains of individuals. This implicit
knowledge base for assurance may not capture the entire picture of attacks and confidence in
defenses over time. For instance, a very recent example by Microsoft shows extremely effective
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“multi-turn jailbreaks" across LLMs, which would require engineers to redesign the existing
defenses by combining heterogeneous knowledge: attack model and history analysis, prompt
and response analysis, turn-pattern analysis, turn-by-turn and overall defenses [10].

Hence, the question we seek to address is: How can one continuously assure that an LLM is
robust enough against adversarial attacks in a particular domain? In this research-in-progress
work, we propose an assurance approach that allows for structuring the heterogeneous knowl-
edge about LLM attacks and defenses (cf. [11]), as well as the application domain. We handle the
knowledge involved in creating assurance arguments explicitly and comprehensively based on
ontological models. The latter allow for a formal argumentation along human-readable assur-
ance cases expressed with machine-readable ontologies, thus creating a shared understanding
about training, guardrails, and implementation.

2. Background and Related Work

LLMs are neural network models that are pre-trained on a large amount of text data and have
been shown to be capable of predicting, translating, or generating text for natural [2] and
programming languages [1].

Traditional adversarial attacks add imperceptible perturbations ¢ to a given data point
x so that a classifier f predicts f(z) = cand f(z + §) = ¢ where ¢ # (/. Attacks on
LLMs involve malicious prompts bypassing guardrails or model alignment to obtain harmful
outputs [6]. Obtaining such prompts includes gradient-based optimizations of the input [6],
persuasion patterns to bypass guardrails [12], and model inversions to generate vulnerable code
in non-natural-language tasks [13]. Robustness defenses are similarly developing and highly
heterogeneous; they include, for example, perplexity filters against gradient-based suffix-style
attacks [14], estimation of the brittleness of jailbreaks [7], and instructions for LLMs to detect
harmful prompts [15].

Assurance is the process of structuring an argument from claims about a system and its
environment that are grounded by evidence [16]. An assurance case is a bundle of arguments,
used to assess the level of confidence in a particular quality of a system [17] in a domain.
Assurance cases have been shown to be suitable for complex and rapidly evolving Al technologies
[18], and also usable for structuring claims about explainability and interpretability [11].

Assurance of Al security draws on traditional methods such as verification with test libraries
[19], validation with human feedback [20], and manual [21] and automated [22] stress testing.
However, the inscrutability of Al has motivated the proliferation of experimental interpretability
[23], auditing [24], and forensic [25] methods to investigate the causes of problematic output.
Research which makes use of both approaches includes the work of Klés et al. [26] on risk-based
assurance cases for autonomous vehicles, and Hawkins et al. [18] on a dynamic assurance
framework for autonomous systems.

Since arguments may cover heterogeneous knowledge about the technology and its domain,
knowledge formalization proves valuable for creating a common understanding. Knowledge
representation and reasoning is a field of Al research [27], covering topics such as formalization
based on ontologies to support explainable AI [28]. An ontology is “an explicit specification
of a conceptualization” (p. 199, [29]) that allows machine-readable knowledge to be shared
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Figure 1: Structure of the ontology. Visualized using Stanford Protégé.

between humans in a common vocabulary.

While the combination of ontologies and assurance cases is not entirely novel - Gallina
et al. [30] propose such a framework for assuring Al conformance with the EU Machinery
Regulation - we note that continuously formalizing, assuring and reasoning about LLM security
is a novel proposition. Our approach links two graph representations in the same ontology: a
non-hierarchical, mixed-direction acyclic graph of attacks and defenses in the LLM’s application
domain, and a hierarchical directed acyclic graph of corresponding claims and evidence about
its robustness. The elements of both graphs are represented as subject-predicate-object semantic
triples using the Resource Description Framework [31] and Web Ontology Language [32]. We
additionally make use of the Goal Structuring Notation (GSN) metamodel [16] to structure
assurance cases (cf. Figure 2) with goals (G), strategies (S), solutions (Sn), contexts (C) and
justifications (J), and add attacks as counterclaims (CC) following community practice [33].

3. Assurance with Ontology-Driven Arguments

3.1. Robustness in Natural Language Tasks

Recent experiments show that simple attacks can have high success rates in the natural language
application domain [6]. For example, Geiping et al. [8] demonstrate that in most tests, particular
characters in seemingly benign prompts (e.g., Latin, Chinese, ASCII) can successfully induce
a particular response from many pre-trained open-source LLMs (e.g., LLaMa-2 with 7 billion
parameters). For example, an attack is deemed successful if an LLM responds with profanities
(i.e., profanity attacks) or reveals its hidden system instruction (i.e., extraction attacks).
Several options can help reduce the vulnerability of an LLM to such attacks. Retraining the
LLM to be robust to character-specific perturbations [34] is arguably more secure than simply
filtering the input based on prompt properties [14], but also more resource and time intensive.
Thus, an engineer may decide to combine defenses in stages: add a naive input filter to exclude
prompts with reportedly “risky" character types in the short-term; perform experiments with
benign and adversarial prompts, reconfiguring the filter to adjust the parameters according to
results in the medium-term; and adversarially retrain the LLM to be deployed in the longer-term.
We develop an ontology that formalizes the relations between concepts (i.e., LLM, attack
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Figure 2: Assurance case in GSN (left), connected graphs (center), and the queriable values in concepts
(right). The boxes are a manual illustration of the text in the argument.

and constraint type) and variables (i.e., attack success rate, character) as described in the paper
[8]. The ontology is implemented with a trivial structure (cf. Figure 1), consisting of classes,
object properties (i.e., relations) and data properties (i.e., values). In the example provides
the attack success rate (e.g., String1_ASR: 0.5) of an individual attack (e.g., adversarial
extraction-type prompt with Chinese-English characters) with the LLM (e.g., LLaMa-2-7B-chat)
and the constraint under which the attack functions (e.g., Chinese language characters).

The ontology allows attack- and defense-relevant values to be retrieved, calculated, and
inserted with complex queries, while showing the argument and architecture to readers. We
posit that this setup and pipeline (cf. Figure 3) separates the following maintenance concerns
while providing an explainable representation of robustness: (i) explication and structuring of
the approaches to defend from adversarial attacks; (ii) continuous reasoning against changes by
querying the parameter values from a central repository; (iii) inserting and maintaining values
in the ontology based on experiments or external empirical data; and (iv) auditing the design
and effectiveness of the operationalized robustness in the LLM (cf. Figure 2).

3.2. Robustness in Code Translation Tasks

LLMs used for domain-specific language tasks can similarly be susceptible to simple adversarial
attacks [13]. We present a toy example where a function for calculating the factorial of a
number is translated from C++ to Python. While users could attempt to jailbreak or translate
intentionally harmful code, they may also be unaware of potential vulnerabilities in the input
or output. These naive requests can happen with large codebases, imprecise mappings between
languages, or users who lack security awareness or proficiency.

Regardless of the user’s intent, the engineer could want to ensure that the LLM is not
generating harmful code. Robustness would then include a sequence of specific claims (S1; G1.5)
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Figure 3: Pipeline for representing data about attacks and defenses into an ontology and assurance
case, for further reasoning by middleware implementing the LLM defenses. Original contributions
emphasized.

about various defenses (cf. Figure 4). We show claims about three example mechanisms for the
given context (C1.5): perplexity input filter (G1.5.1; [14]); and code analysis output filters to
detect injections (G1.5.3; [9, 35]) or lack of input sanitization (G1.5.4; [36]).

Input filters could detect malicious requests. Perplexity (Sn1.5.1) filtering is a mechanism
for determining if the prompt is an outlier (e.g., a gradient-based attack) by comparing it with
the properties of data on which the LLM was trained. Randomization of input may not lead to
comprehensible or functioning code in the prompt, but depending on the LLM training (e.g.,
helpfulness, correctness) and application (e.g., code autocompletion), the LLM may still generate
executable output with vulnerable, malicious or toxic elements.

When an input filter fails to detect an attack, or the LLM generates problematic code from
benign prompts, an engineer can rely on output filters. Code analysis, for example, could flag
vulnerable or malicious elements with manually defined software tests [9, 36] or automatic
queries from externally maintained tools [35]. Such flags can be treated differently. For vul-
nerable code, the LLM could provide three aspects in the same output: the translated function;
a warning that end-users of the function could create problems with wrong or intentionally
manipulated input (CC1.5.4), unless inputs are sanitized (Sn1.5.4); and error message patterns
to fix this (Sn1.5.3.1; Sn1.5.4.1). For malicious code, such as a request to translate an injection
that bypassed the input filter, the filter could prevent the translation from reaching the user
without affecting the helpfulness of the LLM (Sn1.5.3).

4. Conclusion

In this research-in-progress paper, we explore assuring the robustness of LLMs using human-
comprehensible assurance cases and machine-comprehensible semantic networks in ontologies.
We show that our approach can be implemented alongside the LLM-based system, to make its
robustness explainable by providing metadata for code variables, encoding the dependencies
explicitly, and making the evidence transparent. Implications for researchers include studying
different types of claim and evidence, as well as notations towards a shared knowledge for
LLM assurance. Implications for practitioners include a novel idea for proactively engineering
adversarially robust LLMs. Future work will center on exploring and evaluating this approach
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import python

NoSglinjectionFlow::Pathnode sink

import semmle.python.security.dataflow.NoSqlinjectionQuery
import NoSqlInjectionFlow::PathGraph

from NoSqlInjectionFlow::PathNode source,
where NoSglInjectionFlow::flowPath(source, sink)

select sink.getNode(), source, sink, "This NoSQL query contains
an unsanitized $@.", source, "user provided value"

v
def get_integer_input(prompt):
while True:
try:

return int(input(prompt))
except ValueError:

print("Please enter a valid integer.")

number = get_integer_input("Enter a number:

")
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