CEUR-WS.org/Vol-3793/paper_16.pdf

C

CEUR

Workshop
Proceedings

Towards Assurance of LLM Adversarial Robustness
using Ontology-Driven Argumentation

Tomas Bueno Momcilovic®*, Beat Buesser?, Giulio Zizzo®, Mark Purcell® and
Dian Balta’

I fortiss GmbH Research Institute, Munich, Germany
2IBM Research Europe, Zurich, Switzerland
SIBM Research Europe, Dublin, Ireland

Abstract

Despite the impressive adaptability of large language models (LLMs), challenges remain in ensuring
their security, transparency, and interpretability. Given their susceptibility to adversarial attacks, LLMs
need to be defended with an evolving combination of adversarial training and guardrails. However,
managing the implicit and heterogeneous knowledge for continuously assuring robustness is difficult.
We introduce a novel approach for assurance of the adversarial robustness of LLMs based on formal
argumentation. Using ontologies for formalization, we structure state-of-the-art attacks and defenses,
facilitating the creation of a human-readable assurance case, and a machine-readable representation. We
demonstrate its application with examples in English language and code translation tasks, and provide
implications for theory and practice, by targeting engineers, data scientists, users, and auditors.

Keywords

assurance, LLM, adversarial robustness, argumentation, ontologies

1. Introduction

Large language models (LLMs) have shown promise in various natural and domain-specific
language tasks [1, 2], even without further training [3]. However, challenges hinder their
trustworthiness [4], as LLMs have an inscrutable structure and dynamicity that make them
a moving target for safety and security research [5]. In particular, they are brittle against
adversarial attacks; slight perturbations in the input can cause a model to provide malicious
output [6], and guardrails can often only be introduced post-incident [7].

Given the novelty and fast-paced evolution of LLMs, engineers need to rely on preprints
and experiments (cf. [8]) to analyse the impact of novel attacks and envision suitable defenses.
Unlike software security, for which maintained knowledge bases exist (e.g. Common Vulnera-
bility Enumerations [9]), no such process is established for LLMs. Consequently, the required
knowledge is captured in the data, code, documentation, and brains of individuals. This implicit
knowledge base for assurance may not capture the entire picture of attacks and confidence in
defenses over time. For instance, a very recent example by Microsoft shows extremely effective

Late-breaking work, Demos and Doctoral Consortium, colocated with The 2nd World Conference on eXplainable Artificial
Intelligence: July 17-19, 2024, Valletta, Malta

*Corresponding author.

& momcilovic@fortiss.org (T. B. Momcilovic); beat.buesser@ibm.com (B. Buesser); giulio.zizzo2@ibm.com

(G. Zizzo); markpurcell@ie.ibm.com (M. Purcell); balta@fortiss.org (D. Balta)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:momcilovic@fortiss.org
mailto:beat.buesser@ibm.com
mailto:giulio.zizzo2@ibm.com
mailto:markpurcell@ie.ibm.com
mailto:balta@fortiss.org
https://creativecommons.org/licenses/by/4.0

“multi-turn jailbreaks" across LLMs, which would require engineers to redesign the existing
defenses by combining heterogeneous knowledge: attack model and history analysis, prompt
and response analysis, turn-pattern analysis, turn-by-turn and overall defenses [10].

Hence, the question we seek to address is: How can one continuously assure that an LLM is
robust enough against adversarial attacks in a particular domain? In this research-in-progress
work, we propose an assurance approach that allows for structuring the heterogeneous knowl-
edge about LLM attacks and defenses (cf. [11]), as well as the application domain. We handle the
knowledge involved in creating assurance arguments explicitly and comprehensively based on
ontological models. The latter allow for a formal argumentation along human-readable assur-
ance cases expressed with machine-readable ontologies, thus creating a shared understanding
about training, guardrails, and implementation.

2. Background and Related Work

LLMs are neural network models that are pre-trained on a large amount of text data and have
been shown to be capable of predicting, translating, or generating text for natural [2] and
programming languages [1].

Traditional adversarial attacks add imperceptible perturbations ¢ to a given data point
x so that a classifier f predicts f(z) = cand f(z + §) = ¢ where ¢ # (/. Attacks on
LLMs involve malicious prompts bypassing guardrails or model alignment to obtain harmful
outputs [6]. Obtaining such prompts includes gradient-based optimizations of the input [6],
persuasion patterns to bypass guardrails [12], and model inversions to generate vulnerable code
in non-natural-language tasks [13]. Robustness defenses are similarly developing and highly
heterogeneous; they include, for example, perplexity filters against gradient-based suffix-style
attacks [14], estimation of the brittleness of jailbreaks [7], and instructions for LLMs to detect
harmful prompts [15].

Assurance is the process of structuring an argument from claims about a system and its
environment that are grounded by evidence [16]. An assurance case is a bundle of arguments,
used to assess the level of confidence in a particular quality of a system [17] in a domain.
Assurance cases have been shown to be suitable for complex and rapidly evolving Al technologies
[18], and also usable for structuring claims about explainability and interpretability [11].

Assurance of Al security draws on traditional methods such as verification with test libraries
[19], validation with human feedback [20], and manual [21] and automated [22] stress testing.
However, the inscrutability of Al has motivated the proliferation of experimental interpretability
[23], auditing [24], and forensic [25] methods to investigate the causes of problematic output.
Research which makes use of both approaches includes the work of Klés et al. [26] on risk-based
assurance cases for autonomous vehicles, and Hawkins et al. [18] on a dynamic assurance
framework for autonomous systems.

Since arguments may cover heterogeneous knowledge about the technology and its domain,
knowledge formalization proves valuable for creating a common understanding. Knowledge
representation and reasoning is a field of Al research [27], covering topics such as formalization
based on ontologies to support explainable AI [28]. An ontology is “an explicit specification
of a conceptualization” (p. 199, [29]) that allows machine-readable knowledge to be shared

Object property hierarchy. |Data property hierarchy:

%) (%) (%]
v owlThing V- E owl.topObjectProperty V- Bl owItopDataProperty
Y Object v GSN Element ¥ I GSN relation V- B attack success rate
Scientific Paper ¥ Claim M in context of B non-latin extraction attack success rate
Prompt Assumption B supported by B non-alphabetic extraction attack success rate
Natural Person Context BN applies to B Chinese extraction attack success rate
¥ Model Counterclaim B classified under B characters constraint extraction attack success rate
Language Model Goal BN contained in B average extraction attack success rate
Language Justification B corresponds to B ascii profanity attack success rate
Filter Strategy B has source B ascii extraction attack success rate
Extraction attack Solution B is a variation of B ascii (no code) extraction attack success rate
Evaluation Metric B is based on BN has formula
Constraint Type B links to B has URL
Attack B refers to B has value

B set size

Figure 1: Structure of the ontology. Visualized using Stanford Protégé.

between humans in a common vocabulary.

While the combination of ontologies and assurance cases is not entirely novel - Gallina
et al. [30] propose such a framework for assuring Al conformance with the EU Machinery
Regulation - we note that continuously formalizing, assuring and reasoning about LLM security
is a novel proposition. Our approach links two graph representations in the same ontology: a
non-hierarchical, mixed-direction acyclic graph of attacks and defenses in the LLM’s application
domain, and a hierarchical directed acyclic graph of corresponding claims and evidence about
its robustness. The elements of both graphs are represented as subject-predicate-object semantic
triples using the Resource Description Framework [31] and Web Ontology Language [32]. We
additionally make use of the Goal Structuring Notation (GSN) metamodel [16] to structure
assurance cases (cf. Figure 2) with goals (G), strategies (S), solutions (Sn), contexts (C) and
justifications (J), and add attacks as counterclaims (CC) following community practice [33].

3. Assurance with Ontology-Driven Arguments

3.1. Robustness in Natural Language Tasks

Recent experiments show that simple attacks can have high success rates in the natural language
application domain [6]. For example, Geiping et al. [8] demonstrate that in most tests, particular
characters in seemingly benign prompts (e.g., Latin, Chinese, ASCII) can successfully induce
a particular response from many pre-trained open-source LLMs (e.g., LLaMa-2 with 7 billion
parameters). For example, an attack is deemed successful if an LLM responds with profanities
(i.e., profanity attacks) or reveals its hidden system instruction (i.e., extraction attacks).
Several options can help reduce the vulnerability of an LLM to such attacks. Retraining the
LLM to be robust to character-specific perturbations [34] is arguably more secure than simply
filtering the input based on prompt properties [14], but also more resource and time intensive.
Thus, an engineer may decide to combine defenses in stages: add a naive input filter to exclude
prompts with reportedly “risky" character types in the short-term; perform experiments with
benign and adversarial prompts, reconfiguring the filter to adjust the parameters according to
results in the medium-term; and adversarially retrain the LLM to be deployed in the longer-term.
We develop an ontology that formalizes the relations between concepts (i.e., LLM, attack

G2: Demonstrate that the LLM containadin Llama-2-7B-chat ¢

usbed tfor language tasks is G2 - Llama-2-78-chat Q Llama-2-7B-chate"
ropust.
& Types:
* actfast:LanguageModel
containedin
Extraction attac~

S2: Address attacks based on 82 CC2)
common perturbations in . RDF Rank:
adversarial prompts in state-of- *°§ 0
the-art discoveries. &

v 62111 = constraint Chinese Q

G2.1.1.1: Deploy an input filter /
for the identified adversarial rdfs:label

Llama-2-7B-chat "

pawcddns

sequences of Chinese
characters. actfast:String1_ASR
0.5 xsd:float
v Sn2.1.1.1 actfast:String2_ASR
xsd:float
Sn2.1.1.1: Function for ; 0.76
preprocessing the input based 5 actfast:NonLatin_Extract_ASR
on a library of Chinese stringR cess 0.82 xsd:float
character sequences. CodeN o rate actfast:NonAlpha_Extract_ASR
* ntaineg, 0.8 xsd:float
<code\> Extraction string1 with

optimized Chinese (F

Figure 2: Assurance case in GSN (left), connected graphs (center), and the queriable values in concepts
(right). The boxes are a manual illustration of the text in the argument.

and constraint type) and variables (i.e., attack success rate, character) as described in the paper
[8]. The ontology is implemented with a trivial structure (cf. Figure 1), consisting of classes,
object properties (i.e., relations) and data properties (i.e., values). In the example provides
the attack success rate (e.g., String1_ASR: 0.5) of an individual attack (e.g., adversarial
extraction-type prompt with Chinese-English characters) with the LLM (e.g., LLaMa-2-7B-chat)
and the constraint under which the attack functions (e.g., Chinese language characters).

The ontology allows attack- and defense-relevant values to be retrieved, calculated, and
inserted with complex queries, while showing the argument and architecture to readers. We
posit that this setup and pipeline (cf. Figure 3) separates the following maintenance concerns
while providing an explainable representation of robustness: (i) explication and structuring of
the approaches to defend from adversarial attacks; (ii) continuous reasoning against changes by
querying the parameter values from a central repository; (iii) inserting and maintaining values
in the ontology based on experiments or external empirical data; and (iv) auditing the design
and effectiveness of the operationalized robustness in the LLM (cf. Figure 2).

3.2. Robustness in Code Translation Tasks

LLMs used for domain-specific language tasks can similarly be susceptible to simple adversarial
attacks [13]. We present a toy example where a function for calculating the factorial of a
number is translated from C++ to Python. While users could attempt to jailbreak or translate
intentionally harmful code, they may also be unaware of potential vulnerabilities in the input
or output. These naive requests can happen with large codebases, imprecise mappings between
languages, or users who lack security awareness or proficiency.

Regardless of the user’s intent, the engineer could want to ensure that the LLM is not
generating harmful code. Robustness would then include a sequence of specific claims (S1; G1.5)

T
Security Engineer

Extract concepts, and

/—> map them to each
other and to classes

semi-/unstructured

Provide values or
evaluation of prompt Query
harmfulness and LLM results
robustness in query

1
|
|
|
1
|
|
N |
Defense
|
1
|
|
|
1
|
|
|

Map relations between Map concepts and
Data type? -structured—| fields (i.e., columns), claims, and store ina
transform and populate common graph DB

Prompt /
Result Text

o
Query type’ Middleware

<

create [update
A 4

1
1
Create hierarchical Assurance | Link logs as evidence
claims about attacks case h about defense design Logs
and defenses for LLM 1 and effectiveness
1

knowledge representation reasoning

e.g., benchmarks,
preprints,
documents

Figure 3: Pipeline for representing data about attacks and defenses into an ontology and assurance
case, for further reasoning by middleware implementing the LLM defenses. Original contributions
emphasized.

about various defenses (cf. Figure 4). We show claims about three example mechanisms for the
given context (C1.5): perplexity input filter (G1.5.1; [14]); and code analysis output filters to
detect injections (G1.5.3; [9, 35]) or lack of input sanitization (G1.5.4; [36]).

Input filters could detect malicious requests. Perplexity (Sn1.5.1) filtering is a mechanism
for determining if the prompt is an outlier (e.g., a gradient-based attack) by comparing it with
the properties of data on which the LLM was trained. Randomization of input may not lead to
comprehensible or functioning code in the prompt, but depending on the LLM training (e.g.,
helpfulness, correctness) and application (e.g., code autocompletion), the LLM may still generate
executable output with vulnerable, malicious or toxic elements.

When an input filter fails to detect an attack, or the LLM generates problematic code from
benign prompts, an engineer can rely on output filters. Code analysis, for example, could flag
vulnerable or malicious elements with manually defined software tests [9, 36] or automatic
queries from externally maintained tools [35]. Such flags can be treated differently. For vul-
nerable code, the LLM could provide three aspects in the same output: the translated function;
a warning that end-users of the function could create problems with wrong or intentionally
manipulated input (CC1.5.4), unless inputs are sanitized (Sn1.5.4); and error message patterns
to fix this (Sn1.5.3.1; Sn1.5.4.1). For malicious code, such as a request to translate an injection
that bypassed the input filter, the filter could prevent the translation from reaching the user
without affecting the helpfulness of the LLM (Sn1.5.3).

4. Conclusion

In this research-in-progress paper, we explore assuring the robustness of LLMs using human-
comprehensible assurance cases and machine-comprehensible semantic networks in ontologies.
We show that our approach can be implemented alongside the LLM-based system, to make its
robustness explainable by providing metadata for code variables, encoding the dependencies
explicitly, and making the evidence transparent. Implications for researchers include studying
different types of claim and evidence, as well as notations towards a shared knowledge for
LLM assurance. Implications for practitioners include a novel idea for proactively engineering
adversarially robust LLMs. Future work will center on exploring and evaluating this approach

J1: Robustness requires both
Isynlactic and semantic
accuracy to ensure functional
equivalence.

G1: Demonstrate that the LLM
used for code translation is
robust.

o

7

81: Break down robustness
into specific attributes that can
be individually assessed.

17

G1.5: The LLM is resistant to
adversarial attacks during code
translation.

o

C1: The context includes the,
range of source and target
languages supported by the
LLM.

N, =

to Python translation of a code

C1.5: The scenario centers on a C++>

snippet that calculates the factorial of

a number

v

$1.5: Implement and validate
protection mechanisms against
adversarial attacks: filters and
code analysis tools.

C€C1.5.4: Input manipulation attack - An

adversary could exploit the

input

handling in the Python translation,
providing inputs that cause the program
to crash or behave unpredictably (e.g.,
entering a string instead of an integer).

N

~

A 4

A 4

v o

G1.5.1: Implement perplexity

filters to identify and mitigate

inputs likely to cause incorrect
translations.

G1.5.3: Apply code analysis
tools post-translation to verify
the correctness and safety of

the output code.

G1.5.4: The LLM ensures input
validation and error handling in
translated code to protect
against manipulation attacks.

v

v

v

Sn1.5.1: Documentation of
perplexity threshold settings
and testing outcomes in
filtering out adversarial inputs.

Sn1.5.3: Examples of code
analysis tools identifying and
correcting potential
vulnerabilities in output code.

Sn1.5.4: Example code and
tests demonstrating input
validation and error handling
features in output code.

'

o

A4

L4

$n1.5.3.1: Result of the test of

translated code with CodeQL
Python query for detecting

CWE-943 (NoSqlInjection.ql)

Sn1.5.4.1: Validation in Python
code to ensure only integers
are accepted, with an error
message for invalid inputs.

import python

NoSglinjectionFlow::Pathnode sink

import semmle.python.security.dataflow.NoSqlinjectionQuery
import NoSqlInjectionFlow::PathGraph

from NoSqlInjectionFlow::PathNode source,
where NoSglInjectionFlow::flowPath(source, sink)

select sink.getNode(), source, sink, "This NoSQL query contains
an unsanitized $@.", source, "user provided value"

v
def get_integer_input(prompt):
while True:
try:

return int(input(prompt))
except ValueError:

print("Please enter a valid integer.")

number = get_integer_input("Enter a number:

")

References

Acknowledgments

reviewers for their valuable comments.

arXiv:2310.03533 (2023).

G1 =™ C1

N .

G1.5

st

§1.5

G1.51 G1.53

by

vt

Sn1.5.1 Sn1.5.3

Jn poncddus

&11.531

Code3

Figure 4: Sketched argument (left) and its representation in ontology (right).

" (.

CC1.54

G1.54

apparted by

Sn1.54

upported by

&n1.541

supponiad by

Code4

with real-life implementations and industrial use cases, as well as addressing the limitation
of manually formalizing arguments and ontologies, to cover various attacks and improve
maintainability over time.

This research was partially funded by the Bavarian Ministry of Economic Affairs, Regional
Development and Energy. We thank Kevin Eykholt for his valuable input. We also thank the

[1] A.Fan, B. Gokkaya, M. Harman, M. Lyubarskiy, S. Sengupta, S. Yoo, J. M. Zhang, Large
language models for software engineering: Survey and open problems, arXiv preprint

(2]

(8]
(9]

[10]

[11]

[12]

[15]

[16]

[20]

[21]

F. Shi, M. Suzgun, M. Freitag, X. Wang, S. Srivats, S. Vosoughi, H. W. Chung, Y. Tay,
S. Ruder, D. Zhou, et al., Language models are multilingual chain-of-thought reasoners,
arXiv preprint arXiv:2210.03057 (2022).

T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, Y. Iwasawa, Large language models are zero-shot
reasoners, Advances in neural information processing systems 35 (2022) 22199-22213.
Expert Group on Liability and New Technologies, Liability for artificial intelligence and
other emerging digital technologies, European Commission, 2019.

R. Bommasani, K. Klyman, S. Longpre, S. Kapoor, N. Maslej, B. Xiong, D. Zhang, P. Liang,
The foundation model transparency index, arXiv:2310.12941 (2023).

A. Zou, Z. Wang, J. Z. Kolter, M. Fredrikson, Universal and transferable adversarial attacks
on aligned language models, CoRR abs/2307.15043 (2023). arXiv:2307.15043.

A. Robey, E. Wong, H. Hassani, G. J. Pappas, SmoothLLM: Defending large language
models against jailbreaking attacks, arXiv preprint arXiv:2310.03684 (2023).

J. Geiping, A. Stein, M. Shu, K. Saifullah, Y. Wen, T. Goldstein, Coercing llms to do and
reveal (almost) anything, arXiv preprint arXiv:2402.14020 (2024).

MITRE, Common Vulnerability Enumeration., https://www.cve.org/About/Overview, 2023.
Accessed: 2024/03/14.

M. Russinovich, A. Salem, R. Eldan, Great, now write an article about that: The crescendo
multi-turn llm jailbreak attack, 2024. arxiv:2404.01833.

A. V. Silva Neto, J. B. Camargo, J. R. Almeida, P. S. Cugnasca, Safety assurance of artificial
intelligence-based systems: A systematic literature review on the state of the art and
guidelines for future work, IEEE Access 10 (2022) 130733-130770.

Y. Zeng, H. Lin, J. Zhang, D. Yang, R. Jia, W. Shi, How johnny can persuade LLMs to
jailbreak them: Rethinking persuasion to challenge Al safety by humanizing LLMs, CoRR
abs/2401.06373 (2024). arxXiv:2401.06373.

H. Hajipour, T. Holz, L. Schonherr, M. Fritz, Systematically finding security vulnerabilities
in black-box code generation models, arXiv:2302.04012 (2023).

G. Alon, M. Kamfonas, Detecting language model attacks with perplexity, arXiv preprint
arXiv:2308.14132 (2023).

A. Helbling, M. Phute, M. Hull, D. H. Chau, LLM self defense: By self examination, LLMs
know they are being tricked, arXiv preprint arXiv:2308.07308 (2023).

Assurance Case Working Group (ACWG), Goal Structuring Notation Community Standard,
Version 3, https://scsc.uk/scsc-141c, 2021. Accessed: 2024/02/25.

F. A. Batarseh, L. Freeman, C.-H. Huang, A survey on artificial intelligence assurance,
Journal of Big Data 8 (2021) 60.

R. Hawkins, C. Paterson, C. Picardi, Y. Jia, R. Calinescu, I. Habli, Guidance on the assurance
of machine learning in autonomous systems (AMLAS), arXiv:2102.01564 (2021).

M.-1. Nicolae, M. Sinn, M. N. Tran, B. Buesser, A. Rawat, M. Wistuba, V. Zantedeschi,
N. Baracaldo, B. Chen, H. Ludwig, et al., Adversarial robustness toolbox v1. 0.0, arXiv
preprint arXiv:1807.01069 (2018).

J. MacGlashan, M. K. Ho, R. Loftin, B. Peng, G. Wang, D. L. Roberts, M. E. Taylor, M. L.
Littman, Interactive learning from policy-dependent human feedback, in: International
conference on machine learning, PMLR, 2017, pp. 2285-2294.

A. Wei, N. Haghtalab, J. Steinhardt, Jailbroken: How does LLM safety training fail?,

http://arxiv.org/abs/2307.15043
https://www.cve.org/About/Overview
http://arxiv.org/abs/2404.01833
http://arxiv.org/abs/2401.06373
https://scsc.uk/scsc-141c

[27]

[28]

[31]
[32]
[33]
[34]

[35]

Advances in Neural Information Processing Systems 36 (2024).

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, A. Vladu, Towards deep learning models
resistant to adversarial attacks, arXiv preprint arXiv:1706.06083 (2017).

T. Riuker, A. Ho, S. Casper, D. Hadfield-Menell, Toward transparent Al: A survey on
interpreting the inner structures of deep neural networks, in: 2023 IEEE Conference on
Secure and Trustworthy Machine Learning, 2023, pp. 464-483.

A. Koshiyama, E. Kazim, P. Treleaven, P. Rai, L. Szpruch, G. Pavey, G. Ahamat, F. Leut-
ner, R. Goebel, A. Knight, et al,, Towards algorithm auditing: a survey on managing
legal, ethical and technological risks of ai, ml and associated algorithms, SSRN Preprint,
10.2139/ssrn.3778998 (2021).

S. Shan, A. N. Bhagoji, H. Zheng, B. Y. Zhao, Poison forensics: Traceback of data poisoning
attacks in neural networks, in: 31st USENIX Security Symposium (USENIX Security 22),
2022, pp. 3575-3592.

M. Klas, R. Adler, L. Jockel, J. Grof3, J. Reich, Using complementary risk acceptance criteria
to structure assurance cases for safety-critical AI components., in: AlSafety@ IJCAI, 2021,
pp- 1-7.

J. P. Delgrande, B. Glimm, T. Meyer, M. Truszczynski, F. Wolter, Current and fu-
ture challenges in knowledge representation and reasoning, arXiv 2308.04161 (2023).
arXiv:2308.04161.

S. Chari, O. Seneviratne, D. M. Gruen, M. A. Foreman, A. K. Das, D. L. McGuinness,
Explanation ontology: A model of explanations for user-centered Al in: J. Z. Pan, et al.
(Eds.), ISWC 2020, Springer, Cham, 2020, pp. 228—243.

T. R. Gruber, A translation approach to portable ontology specifications, Knowledge
Acquisition 5 (1993) 199-220.

B. Gallina, T. Y. Olesen, E. Parajdi, M. Aarup, A knowledge management strategy for
seamless compliance with the machinery regulation, in: European Conference on Software
Process Improvement, Springer, 2023, pp. 220-234.

World Wide Web Consortium (W3C), RDF/XML syntax specification (revised), https:
//www.w3.org/TR/REC-rdf-syntax/, 2023.

World Wide Web Consortium (W3C), OWL 2 web ontology language, (second edition),
https://www.w3.org/TR/owl2-rdf-based-semantics/, 2012.

R. Bloomfield, J. Rushby, Assessing confidence with assurance 2.0, arXiv preprint
arXiv:2205.04522 (2022).

B. Cao, Y. Cao, L. Lin, J. Chen, Defending against alignment-breaking attacks via robustly
aligned LLM, 2023. arXiv:2309.14348.

Github, CodeQL, https://codeql.github.com/, 2024. Accessed: 2024/03/05.

[36] J.Liu, C.S. Xia, Y. Wang, L. ZHANG, Is your code generated by ChatGPT really correct?

rigorous evaluation of large language models for code generation, in: A. Oh, et al. (Eds.),
Advances in Neural Information Processing Systems, volume 36, 2023, pp. 21558-21572.

http://arxiv.org/abs/2308.04161
https://www.w3.org/TR/REC-rdf-syntax/
https://www.w3.org/TR/REC-rdf-syntax/
https://www.w3.org/TR/owl2-rdf-based-semantics/
http://arxiv.org/abs/2309.14348
https://codeql.github.com/

	1 Introduction
	2 Background and Related Work
	3 Assurance with Ontology-Driven Arguments
	3.1 Robustness in Natural Language Tasks
	3.2 Robustness in Code Translation Tasks

	4 Conclusion

