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Abstract
This paper presents a discussion on utilising a dashboard tool to enhance the interpretability of SHapley
Additive exPlanations (SHAP) in healthcare Artificial Intelligence(AI)-based applications. Despite SHAP’s
potential to demystify an AI model’s decisions, interpreting SHAP values remains challenging, especially
when considering different data neighbourhoods [1]. This issue is particularly critical in healthcare,
where decision-making requires high precision and clarity. We demonstrate three use cases that can
effectively demonstrate the utility of interactive neighborhood exploration. The first compares SHAP
explanations in two similar patient neighbourhoods with different classifications, offering unique insights
into features that influence classification changes. The second use case focuses on “feature freezing”
which isolates certain features to better understand their impact. This can enable highlighting diagnostic
tests considered important by a Machine Learning (ML) model for a specific population of patients (e.g.,
patients of the same age). The final use case demonstrates the relationship between sufficient features
for a given classification and the importance ranking by SHAP.
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1. Introduction
The field of Explainable AI (XAI) is dedicated to enhancing the transparency and trustworthiness
of AI systems [2]. One state-of-the-art XAI framework is SHAP, which highlights the influence
of dataset features on AI model predictions by assigning importance scores(SHAP values)
and is based on a solid theoretical foundation [3]. However, interpreting SHAP values is
challenging due to their dependence on the sample sets or “neighbourhoods" used during
analysis, complicating their application in the precision-critical field of healthcare [4, 5, 1].

In SHAP’s analysis, different samples are constructed by mixing the feature values from the
input sample(to be explained) and the neighbourhood samples. Since different neighbourhoods
produce varying explanations, a layer of complexity and ambiguity is introduced when inter-
preting SHAP values. When only one of these varying explanations is presented in a standalone
manner, it can lead to an inconsistent interpretation of the model’s behaviour. Furthermore,
the assigned importance scores by SHAP are relative to feature values in the training data,
complicating their interpretation against a fixed baseline. Presenting multiple explanations
collectively to users enables understanding how distinct feature values influence the model’s
decisions, enhancing insights into the model’s behaviour.
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Previous studies have explored the impacts of neighbourhoods on SHAP’s explanations [4, 6].
However, fewer studies have focused on providing varying explanations by exploring different
neighbourhoods and interpreting these explanations in the context of a use case. There is an
emerging need for an interactive exploration of these neighbourhoods, enabling users to adjust
various parameters such as distance metrics, handle data imbalance, and allow feature value
ranges in a neighbourhood. Additionally, fundamental explanation blocks, such as sufficient
feature sets, provide specific insight regarding an ML model. Sufficient sets of features can
preserve a classification regardless of the values of other features.

To address the challenges of clarity and consistency in interpreting SHAP values across
neighbourhoods, this work presents a discussion for an interactive analysis of AI decision-
making processes. Our tool enables users to explore how different types of samples impact
the explanations and their interpretation. This holistic interpretation will facilitate a deeper
understanding of model decisions, enhancing SHAP-driven insights. To demonstrate the utility
of the proposed approach, we focused on the following three insights:

• Similar vs different patient records: SHAP values using similar and differently classi-
fied patient records are compared to highlight key influences on classification confidence.

• Feature Freezing: SHAP values are analysed when certain features are held constant in
a neighbourhood for understanding feature significance within specific patient groups.

• Sufficient Sets: The relationship between sufficient feature sets and their importance
rankings across various neighbourhoods is analysed.

2. Related Work
SHAP [3] calculates the impact of features on model predictions by averaging the changes when
a feature is added or removed, using training set values for replacing “removed" features. This
approach forms a ‘neighbourhood’ around an input, 𝑥, where SHAP analyses the perturbed
samples formed by combining attributes from 𝑥 and training data.

Authors in [4] demonstrated how XAI frameworks - SHAP and LIME can be fooled to generate
FI scores that do not reflect the actual learned representation of AI/ML models. The ML models
might be biased, but if specific neighbourhoods based on adversarial examples are used, the
explanations generated can be used to hide the biases in models.

Various frameworks have been designed to improve the transparency of ML models via
interactive exploration. For instance, “modelStudio"[7], “explAIner" [8], and “InterpretML"[9]
provided an interactive environment that allows users to explore and understand predictions
through various explanations. Complementing these tools, “The what-if tool" [10] focused on
interactive probing of models, providing users with the means to test hypothetical scenarios
and observe how model predictions change with varying input data for understanding model
sensitivity and decision boundaries. However, none of the dashboards explores the neighbour-
hoods used by XAI frameworks to understand the context of model predictions, which is crucial
for evaluating the robustness and applicability of explanations.

To explore the impact of various neighbourhoods on the explanations produced by surrogate
XAI frameworks such as LIME, [6] developed an interactive dashboard - Explain-Explore. How-
ever, no exploratory tool has been proposed in the literature to interpret SHAP’s explanations
with respect to distinct neighbourhoods. In [1], a comprehensive analysis of the impact of



Figure 1: Proposed Interactive Dashboard

neighbourhoods on SHAP and LIME was conducted. This work presents an extension on [1] by
enabling an interactive analysis of neighbourhoods with SHAP.

3. Methodology
This proposed work is implemented with the Dash1 and Plotly2 libraries in Python. The
subsequent sections outline the methodology for building this tool, detailing the types of
neighbourhoods and the use cases for utility analysis.

The workflow of our dashboard creation starts with the selection and pre-processing of the
required dataset, followed by model training. SHAP values for the model’s predictions are
generated by analysing an input sample 𝑥 and the trained classifier. Initially, the neighbourhood
for calculating the values is derived from the training dataset. The dashboard also presents
the classification output and the associated confidence score. A critical step is identifying
minimal subsets of features that are sufficient for determining the model’s predictions. A
detailed description of these sets is provided in Section 3.3.

As shown in Figure 1, the proposed tool plots SHAP values and displays confidence scores
and sufficient feature sets. Users can modify input sample values, observe feature importance
and confidence score changes, and choose neighbourhood settings. Updates in neighbourhood
settings re-calibrate SHAP calculations with updated scores. Neighbourhood information (e.g.,
mean feature values) is accessible via hover-over tooltips on the bar charts. The time complexity
for generating SHAP explanations is directly proportional to the number of features in the
dataset. In future work, we will explore optimisation techniques that can be used with SHAP
for generating explanations faster[11].

3.1. Dataset and Classifier
In this study, we used the Heart Disease dataset from the UCI repository [12] for heart disease
prediction using individual health records. This dataset was selected to demonstrate different
1https://dash.plotly.com/
2https://plotly.com/python/

https://dash.plotly.com/
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use cases about the medical features in tabular datasets and includes 14 attributes related
to heart disease, spanning initial and detailed medical tests, with 297 records where 160 are
classified as negative and 137 as positive for heart disease. Features such as age, sex, types
of angina, blood sugar, blood pressure, and cholesterol levels, which are standard initial tests
before more advanced examinations, are included [13]. In one of our use cases, we freeze these
standard features in a neighbourhood to showcase how SHAP’s revised rankings enhance model
understanding. The presented approach is extensible to any other tabular medical dataset.

For the model, a Support Vector Machine (SVM) classifier was employed due to its robustness
in handling both linear and non-linear classifications suited for the complex patterns in heart
disease data. The classifier achieved an accuracy of 86.67% using 5-fold cross-validation. How-
ever, the primary focus of this work is not on model accuracy but on the application of SHAP, a
model-agnostic framework. This emphasis allows us to concentrate on the interpretability and
utility of SHAP explanations, regardless of the model’s accuracy metrics.

3.2. Neighbourhoods
As outlined earlier, SHAP constructs contexts by generating perturbed samples by randomly
replacing original input feature values with those from neighbourhood samples. The stan-
dard version of SHAP uses training data and is referred to as “standard". Further explored
neighbourhoods are described below, based on the sample’s classifications:

1. Balanced/Skewed: Balanced/skewed distributions of classified perturbed samples
2. Similar versus Different Classifications: Composing samples that either share the

same classification as the input (referred to as 𝑖𝑛𝑠𝑖𝑑𝑒) or differ from it (𝑜𝑢𝑡𝑠𝑖𝑑𝑒)
3. Using Mahalanobis Distance for Locality: Neighborhood samples based on Maha-

lanobis distance metric
4. Freezing the Features: Specific features can be fixed across samples to have the same

value as the input sample to isolate and understand the effects of other varying features.

3.3. Utility Analysis
This section describes use cases to demonstrate how multiple insights can enhance clinicians’
understanding of an AI/ML model.

Similar vs Different Patients: SHAP explanations for patient records under two neighbour-
hoods - outside and inside, are compared to the standard and balanced settings. We discuss a
use-case using a specific patient record and then provide Kendall correlation between feature
rankings in standard SHAP versus different neighbourhoods to demonstrate the dissimilarity.
Presenting different rankings, we discuss how different types of samples affect SHAP values
and how to interpret them with respect to the classification results.

Feature Freezing: Specific neighbourhoods are constructed, keeping some features constant
across all samples. This enables examining how particular features impact groups of patients
who share characteristics like age or gender. By keeping the basic set of features constant,
clinicians can better understand how specific advanced tests influence the outcome. Kendall
correlation between the two rankings of variable features - with frozen neighbourhood and
with standard SHAP - are provided to demonstrate the dissimilarity in their rankings.



Sufficient Sets: The relationship between sufficient feature sets and high-ranked features by
SHAP is studied. The sufficient sets of features are subsets that keep the classification as it is in
a neighbourhood even when other features were varied [14]. The percentage of times, when the
top-3 ranked features by SHAP under different neighbourhoods, are also the sufficient subset
of features is presented. As SHAP values can be positive/negative, the results are categorised
based on whether these top-3 features are negatively scored, positively scored, or overall top-3
features. The code to reproduce results is available on Github3.

4. Results
To demonstrate the utility of our dashboard, specific patient records are considered and the
SHAP plots are shown for discussions.

4.1. Similar vs Different Patient Records

Table 1
Patient record selected for use-case: Similar vs different records

Age Sex Typical
Angina

Atypical
Angina

Resting
BP

Blood
Sugar

Rest
ECG

Choles -
terol

Non-
Anginal
Pain

Slope ST De-
pression

Asymptoma
-tic Angina

Exercised In-
duced Angina

MHR Ex-
ceeded

Major
Vessels

Thala -
ssemia

41.0 0.0 0.0 1.0 130.0 0.0 2.0 204.0 0.0 1.0 1.4 0.0 0.0 0.0 1.0 3.0

We analysed SHAP values for a patient record (detailed in Table 1) under four settings:
standard, balanced, inside, and outside. Figure 2a shows the standard SHAP values for classifying
the patient as healthy (𝑓(𝑥) = 0). Figure 2b illustrates the values in a balanced neighbourhood,
and Figures 2c and 2d display the values using the outside and inside settings, respectively.

The figures highlight variations in feature rankings across different settings, each providing
a distinct interpretation. This analysis focuses on the impact of two specific features, major
vessels and fasting blood sugar, on classification probabilities. Changing the number of major
vessels from 1 to 0 increases classification probability from 0.72 to 0.90 for class 0, whereas
a change from 1 to 2 alters the classification. This shows how the number of major vessels
influences classification. The mean value of major vessels in training data is 1. Still, the standard
SHAP values in Figure 2a do not explain why there is a positive contribution associated with
major vessels equal to 1. Conversely, the mean value of major vessels in “outside" is 2, making
it easy to interpret that an increase in the value alters (negative impact shown in Figure 2c) the
classification. This is also evident in Figure 2b, however, with less strength due to the combined
effect from samples of both classes. For fasting blood sugar, altering the value from 0 to 1
improves the prediction probability to 0.87 for class 0. This significant effect is captured in
“inside" (Figure 2d) as the mean value of fasting blood sugar in this neighborhood is 1.

Kendall correlation coefficients reveal discrepancies in SHAP rankings across different neigh-
bourhood settings. Specifically, the correlation between standard and balanced neighbourhood
settings is 0.669, between standard and outside settings is 0.694, and between standard and
inside settings is 0.671. These variations highlight how different neighbourhood contexts yield
different insights that can be used for clearer interpretations. In the context of healthcare, these
insights can significantly enhance patient care. By understanding how specific changes in

3Link to the code - https://github.com/UrjaPawar/shap-dash



(a) Standard SHAP scores (b) SHAP scores with “balanced"

(c) SHAP scores with “outside" (d) SHAP scores with “inside"

Figure 2: SHAP scores under different neighborhood settings

Neighbourhoods Standard Balanced Outside Inside
Mean values (Major Vessels) 1 1 2 0
Mean Values (Blood Sugar) 0 1 0 1

Table 2
Mean Values of Major vessels and Blood sugar across different neighbourhoods

patient data affect health outcomes using the ML model, clinicians can interpret the knowledge
of the ML model more effectively.

4.2. Feature Freezing
Age Sex Typical

Angina
Atypical
Angina

Resting
BP

Blood
Sugar

Rest
ECG

Choles -
terol

Non-
Anginal
Pain

Slope ST De-
pression

Asymptoma
-tic Angina

Exercised In-
duced Angina

MHR Ex-
ceeded

Major
Vessels

Thala -
ssemia

50.0 0.0 0.0 0.0 120.0 0.0 0.0 219.0 1.0 2.0 1.6 0.0 0.0 0.0 1.0 3.0

Table 3
Patient record selected for use-case: feature freezing

A patient record, which includes basic medical history and basic diagnostic tests like age,
sex, presence of typical or atypical angina, fasting blood sugar, blood pressure, and cholesterol
levels, is selected for analysis as described in Table 3. We keep these values constant across a
local neighbourhood to assess the impact on the rankings of the remaining features.

Figure 3a shows the standard SHAP values, while Figure 3b displays the values when basic
features are held constant (“frozen"). There’s a noticeable shift: Thalassemia, an advanced
medical test, gains more importance when basic features are frozen compared to its lesser
significance in standard settings. The complex interactions between features may obscure
Thalassemia’s impact in standard settings compared to when the basic medical features are
frozen, highlighting the significance of the test.



Sufficient sets identification (%) top-3 positive top-3 negative top-3 overall
Standard 20% 27% 46%
Balanced 20% 63% 60%
Inside 20% 60% 6%
Outside 20% 66% 86%

Table 4
Percentage of patient records where sufficient sets were identified by top-3 features

The Kendall correlation between the rankings of “unfrozen" features in standard and frozen
settings was found to be 70%, indicating notable dissimilarity. This use case can enable clinicians
to clearly understand and amplify the relevance of diagnostic tests like Thalassemia with respect
to specific patients.

(a) SHAP Scores with standard settings (b) SHAP Scores with Frozen Features

Figure 3: Different SHAP rankings on freezing features

4.3. Sufficient Feature Sets
An experiment was conducted to observe and associate the sufficient feature sets with SHAP
feature rankings under different neighbourhood settings to note how many of the top-3 features
form a sufficient set to maintain a given classification. As shown in Table 4, the standard SHAP
scores could identify sufficient sets in only 46% of the patient records. However, with 𝑜𝑢𝑡𝑠𝑖𝑑𝑒
settings, SHAP’s analysis focuses more on patients with a different classification and identifies
sufficient sets in 86% of the patients when the top-3 overall features are considered. This shows
that to identify features sufficient to maintain a classification, SHAP should be provided with
more examples from different classifications to highlight impactful features with respect to the
current classification.

5. Conclusions
This paper presented an interactive approach to improve the interpretability of SHAP in health-
care by exploring the impact of different neighbourhoods. The utility of this dashboard is
demonstrated through three specific use cases, showing its effectiveness in providing detailed
insights into SHAP explanations. Future work will focus on expanding the dashboard’s func-
tionalities and improving its user interface. It will include adding more diverse XAI techniques
and exploring further neighbourhood definitions to encompass a more comprehensive array of
clinical scenarios. We also plan to make the tool available as a pip package and conduct user
studies with healthcare professionals to refine and enhance the dashboard’s features based on
real-world feedback.
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