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Abstract 
We describe Explainable Artificial Intelligence (XAI) methods for image segmentation for 
autonomous driving applications. The analysis is conducted using metrics such as efficiency, 
robustness, localization, and complexity. Four XAI methods, namely Gradient-weighted Class 
Activation Mapping (GradCAM), Local Interpretable Model Agnostic Explanations (LIME), 
Feature Ablation, and Saliency are applied and assessed on a dataset of street images.  

Keywords  
Validation, Metrics, Captum, XAI Methods, Segmentation, Computer Vision1 

1. Introduction 

Computer vision through machine learning is a relevant topic in the field of autonomous 

driving. Within the field of computer vision, there are various tasks such as image 

classification, object detection, semantic segmentation, and instance segmentation. The 

focus of this paper lies in the evaluation of Explainable Artificial Intelligence (XAI) methods 

on segmentation models. Because we want to use the segmentation models for autonomous 

driving in the future, we focused on images showing street scenes. The current model 

quality indicates that there is a lot of further work necessary before their implementation 

in a real-world application.  

The methods refer to algorithms that are included in the Captum package [1]. For the 

evaluation of XAI methods, four metrics were used, three of which originate from the 

categories of complexity, robustness, and localization as listed in Quantus [2]. Complexity is 

based on sparseness, robustness on average sensitivity, and localization on Relevance Rank 

Accuracy (RRA) and accordingly the False Positive Rate of RRA. The fourth metric, 

efficiency, was measured based on runtime.  

To apply and evaluate XAI methods, it is necessary to have images and a model capable 

of segmenting images. A publicly available dataset that provides street images with ground 
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truth masks is Cityscapes [3]. Images from Zurich, Switzerland, were selected from this 

dataset. For the segmentation, pre-trained models from PyTorch were used [4]. 

2. Segmentation Models 

To evaluate the segmentation of street elements, the pre-trained models DeeplabV3 and the 

Fully Convolutional Network (FCN) both with ResNet101 architecture from PyTorch were 

analyzed. These models were trained using part of the COCO val2017 dataset and the 20 

segmentation classes from Pascal VOC. The decision to use pre-trained models was because 

these 20 classes include relevant street elements such as bicycles, buses, cars, motorbikes, 

people, and trains. The models were selected due to their high average Intersection over 

Union (IoU) scores, which are listed on the PyTorch website [4]. 

For the evaluation of the segmentation models, two metrics were employed: the IoU 

value and the Matching Area. The evaluation, shown in Table 1, involved calculating the 

average values of 122 images from Zurich for both metrics. 

Table 1 
Segmentation Performance Comparison of Deeplabv3 ResNet101 and FCN ResNet101 Models 
Across Road-Related Classes 

A conclusion drawn from the results of this table is that both the Deeplabv3 and FCN 

models demonstrate similar performances in segmenting road-related classes. Specifically, 

the "Car" and "Person" classes tend to exhibit the best results in segmentation for both 

models. Therefore, only these two classes will be used for further evaluations. 

3. XAI Methods 

Various XAI methods can be utilized. These methods are classified into two categories: 

model-specific and model-agnostic. Model-specific methods analyze how changes in the 

input features change the output, whereas model-agnostic methods work by manipulating 

input data and analyzing the respective model predictions. Within the subclasses of specific 

and agnostic, a further differentiation is made based on whether the method is local or 

global. Additionally, local methods explain the individual predictions of models, while global 

Model Class Matching Area IoU 

Deeplabv3 ResNet101 Bicycle 0.084 0.052 

 Bus 0.018 0.017 

 Car 0.735 0.633 

 Motorbike 0.032 0.025 

 Person 0.360 0.232 

 Train 0.009 0.008 

FCN ResNet101 Bicycle 0.093 0.059 

 Bus 0.020 0.018 

 Car 0.738 0.628 

 Motorbike 0.043 0.030 

 Person 0.331 0.236 

 Train 0.023 0.022 



methods explain the behavior of the model [5]. In this evaluation, a total of four XAI methods 

are applied. The selection of methods was partially based on Munn and Pitman [6]. The 

authors dedicated a chapter in their book to the topic of explainability for image data. In this 

chapter, the methods, GradCAM and LIME, were introduced, which was one reason for 

choosing these two methods. Two further methods were selected: Feature Ablation and 

Saliency.  

Gradient-weighted Class Activation Mapping (GradCAM) [7] is a technique that 

analyzes gradient information for any convolutional layer of a model and generates a 

heatmap that highlights important regions in the image.  

Local Interpretable Model Agnostic Explanations (LIME) [8] involves multiple 

iterations of removing specific regions of an image to determine which specific areas are 

more or less important. It is a model-agnostic, perturbation-based method. 

Feature Ablation [9] is also a perturbation-based method. It calculates the difference of 

the attribution in the model output of each feature when it is active and when it is replaced. 

Multiple features can be turned off together instead of one at a time. 

Saliency [10] is a method that follows the gradient of a class through the model using 

backpropagation. During this process, each pixel is minimally changed, and the resulting 

changes are observed in the prediction of the class score. 

In the implementation of XAI methods, an image representing a street scene was 

selected. The following two segmentation classes were examined: cars and persons. The 

calculated attribution values from the methods were normalized and a heatmap was 

generated and overlaid on the original image, as shown in Figure 1. While the original image 

had dimensions of 2048 x 1024 pixels, it was resized to 512 x 256 pixels to enhance 

computational speed. 

Figure 1: The Heatmaps from XAI Methods GradCAM, Feature Ablation, Saliency, and 

LIME Superimposed on the Original Street Images. The Top Row Shows the "Car" 

Segments while the Bottom Row Shows the "Person" Segments. 

4. Metrics 

Hedström et al. [2] compare various XAI libraries of evaluation metrics for XAI methods. 

Metrics were divided into six categories: Faithfulness, Robustness, Localisation, Complexity, 

Axiomatic and Randomisation. Three metrics based on these categories were used to 

evaluate XAI methods and an additional efficiency metric was employed. The selection of 



the following metrics was guided by the idea to test and understand metrics from different 

categories but else chosen somewhat arbitrary.  

To measure the efficiency of a method, the runtime was recorded. The time taken to 

compute the attributions for the "Car" and "Person" classes was measured. 

To calculate robustness, the average sensitivity [11] was applied. Zhou et al. [12] 

describe that models usually do not adapt well to new environments when new factors such 

as weather or illumination conditions are introduced. For this reason, the original images 

were modified to various brightness levels while preserving the objects in the image. For 

calculating the average sensitivity, the following formula (1) was used: 

𝐴𝑣𝑔𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
1

𝑁
𝛴1=1

𝑁 |𝐴𝑣𝑔𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑟𝑖𝑔 𝐼𝑚𝑎𝑔𝑒 − 𝐴𝑣𝑔𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑚𝑜𝑑 𝐼𝑚𝑎𝑔𝑒| (1) 

 

To obtain comparable values, the average sensitivity was calculated using the same 

method for the "Car" and "Person" classes. A low value of average sensitivity indicates good 

robustness, where 0 represents the lowest and 1 the highest possible value. Figure 2 

illustrates an example of how the average attribution may appear at different brightness 

levels. 

 

 

Figure 2: Example with average attribution at different brightness levels. Robustness is 

ensured when the average attribution remains equal to or only slightly deviates from the 

original. 

Next, we consider the metric Relevance Rank Accuracy (RRA) [13], which falls in the 

category of Localization. This metric measures how many of the highly attributed pixels are 

located within the ground truth mask. In our evaluation, highly attributed pixels are defined 

as those falling within the top 20% range. This means when attributions range from 0 to 1, 

values from 0.8 to 1 are marked as highly attributed. An example of calculating the RRA is 

illustrated in Figure 3. Not only is the RRA an important indicator, but also the False Positive 



(FP) Rate of the RRA. A method might represent all pixels in the image as highly important, 

resulting in an RRA of 1, which is the highest possible value. Therefore, to achieve more 

comparable results, the FP RRA was additionally examined. 

 

 

Figure 3: Example of calculating the RRA and FP RRA with the ground truth mask. 

The sparseness [14] was measured as the last metric, falling in the category of 

Complexity. Here, the Gini index (G) is used for calculation. In our case, G indicates how 

scattered or concentrated the attributions are distributed in an image. A value of 0 (the 

smallest value) indicates a large dispersion, where each pixel is crucial for segmentation. A 

value of 1 (the largest value) indicates that the important attributions are concentrated. For 

calculating the Gini index, the following formula (2) was used [15]:  

 

𝐺 =
2 ∑ 𝑖𝑥(𝑖)𝑛

𝑖=1

𝑛 ∑ 𝑥(𝑖)𝑛
𝑖=1

−
𝑛 + 1

𝑛
 (2) 

 

Let 𝑖 be the indexing for the position of an attribution in an array, 𝑥(𝑖) be the value of the 

attribution at position 𝑖, and 𝑛 be the number of pixels in the image. The higher the Gini 

index, the better. A lower value indicates that the importance of all pixels is equal. Our 

images consist of different objects and only the pixels representing the object should be 

marked as important, which favors a higher G value. 

5. Evaluation of XAI methods 

In the evaluation, the metrics of average sensitivity, RRA and sparseness were calculated 

for the targets Car and Person. The target is a parameter that can be selected in every 



method. The first number in Table 2 represents the Car class, while the second number 

represents the Person class. 

Table 2 
Evaluation of the methods GradCAM, Feature Ablation, Saliency and LIME on the metrics. The 
arrow direction indicates whether higher or lower results are considered better. 

In terms of efficiency, GradCAM clearly outperforms all other XAI methods, followed by 

Saliency, then Feature Ablation and LIME. In terms of robustness, measured by average 

sensitivity, both GradCAM and Saliency show remarkable performance. In particular, 

Saliency shows almost no change in attribution values despite brightness variations. In the 

RRA and FP RRA category, Feature Ablation and LIME using Max(0,RRA - FP RRA) show 

identical top performance. The performance of Saliency in this category is considered 

significantly off target. The low, almost zero RRA means that Saliency only finds very few 

highly attributed pixels, present in the ground truth mask. In terms of the sparseness metric, 

the Saliency method emerges as the top performer. The other three methods show similar 

values that are significantly different from that of Saliency. Furthermore, it is observed that 

LIME and Feature Ablation exhibit similar or even identical values. The similarity may arise 

from the fact that both LIME and Feature Ablation are perturbation-based methods. 

Additionally, it is notable that in most cases, the values from the category "Car" are better 

than those from the category "Person." One possible reason for the lower performance 

values in the "Person" class could be the downsizing of the image, as described in Chapter 

3. Table 3 shows how the values of the Matching Area, which indicates how well the 

segmentation aligns with the ground truth mask, get worse when the image is resized. 

Another reason could be the general size of the objects in the image. A car, in comparison, 

has a significantly larger area than a person and is therefore easier to detect. 

Table 3 
Effects of Image Resizing on Segmentation Accuracy of Class “Person” 

In Figure 4, the measured metrics are visualized in a radar chart with best scores on the 

outer circle and worse scores in the inner area. 

 GradCAM Feature Ablation Saliency LIME 

Runtime [sec] (↓) 4 117 18 144 

Avg-Sensitivity (↓) 0.043/0.022 0.199/0.351 0.005/0.005 0.194/0.389 

RRA (↑) 0.472/0.287 0.929/0.640 0.001/0.003 0.929/0.640 

FP RRA (↓) 0.026/0.096 0.079/0.334 0.125/0.167 0.079/0.334 

Max(0,RRA – FP RRA) (↑) 0.446/0.191 0.850/0.306 0.000/0.000 0.850/0.306 

Sparseness (↑) 0.302/0.242 0.258/0.159 0.793/0.722 0.327/0.128 

Matching Area 2048 x 1024 1024 x 512 512 x 256 

Class “Person” 0.756 0.745 0.710 



 

Figure 4: Spider plot comparing evaluation metrics of methods (Car left and Person right) 

To evaluate the methods by the used metrics, we need to distinguish between their 

importance. Two of the most relevant metrics are shown in the lower part of the spider plot, 

namely the metrics RRA and FP RRA. They are a central aspect in the human interpretability, 

as they indicate in the heatmap (Figure 1) what is considered important. Due to the bad 

interpretability, we decide not to pursue Saliency further. Setting Saliency aside as a 

method, the three remaining methods can be ordered according to their performance: 

GradCAM demonstrates superiority, followed by Feature Ablation and LIME. 

6. Conclusion 

In summary, GradCAM emerges in this study as the first choice for evaluating XAI 

methods for image segmentation, not only because of its favorable metrics but also because 

of its interpretability in the heatmap. Figure 1 illustrates how GradCAM considers not only 

the objects themselves but also contextual features such as the road. The heatmap shows a 

gradient from orange (important) to red (very important), which is missing in other 

methods. The situation for Saliency was different: While it performed well in the metrics, 

its heatmap provided almost no information, making interpretation difficult. This highlights 

the importance of understanding and selecting a comprehensive set of metrics that can 

provide a clear understanding of the reliability of the methods. We acknowledge that the 

results are specifically tailored to this case and cannot be directly applied to other fields, 

such as medicine. Nevertheless, they represent a crucial first step toward future 

autonomous driving applications. 

The current study is to the best of our knowledge the first one to evaluate a subset of XAI 

methods for image segmentation, an application area of computer vision that has not 

received as much attention as, e.g., image classification. Future research should involve a 

variety of data sets and segmentation models and prioritize the evaluation of a broader 

range of XAI methods for image segmentation. This research should include the 

development and application of various evaluation metrics, with a particular focus on 

interpretability. By optimizing these evaluation criteria, an understanding of the specific 

strengths and weaknesses of different XAI methods can be achieved, which eventually leads 

to the identification of the most suitable methods for specific applications. 
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