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Abstract

Random forests (RFs) are a popular machine learning method with good prediction performance, but
difficult to interpret due to their structure as an ensemble method. To interpret RFs, decision trees
can be used as surrogate models to preserve the tree structure. Alternatively, a tree of the RF can be
selected as a surrogate model, whereby a direct part of the RF is used and not a similar model. The
most representative tree (MRT) of the RF is used for this, which is most similar to all other trees of
the RF. However, MRTs have the potential for misinterpretation due to non-informative early splits.
To overcome this, the research in my PhD thesis will focus on generating an algorithm for artificial
representative trees (ARTs) and comparing them with MRTs and decision trees as surrogate models using
simulation studies as well as benchmark data. The first results show a promising improvement in terms
of predictive quality and interpretability when comparing ARTs and MRTs.
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1. Context and motivation

Random forests (RFs) are a well-known and efficient machine learning (ML) algorithm for
creating predictive models, especially for tabular data [1]. For example, RFs can be used to
analyze high-dimensional molecular or genetic data [2, 3] as well as to enable individualized
treatment options for patients in the context of precision medicine [4]. They consist of an
ensemble of decision trees [5], whereby the decisions of a single tree are understandable.
However, it is difficult for a human to understand the decisions of the RF in detail, which is
why RFs are often referred to as black box models. Despite good prediction performance, this
can be a barrier to the use of these methods in practice [6].

There are various approaches to make the decisions of such complex models understandable
to enable an interpretation of the model. This includes understanding the individual predictions
and which variables influence these predictions. For example, post hoc approaches such as
partial dependence plots can be used to determine which variables influence the prediction of a
model. In addition, variable importance can measure how important the variables are for the
prediction performance [7]. Alternatively a surrogate model that is easier to interpret such as
a decision tree can be developed instead. To ensure that the surrogate model is as similar as
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possible to the original model, it is usually trained to make the same predictions as the black
box model as it was done in [8]. However, there are also other approaches for using decision
trees as surrogates. For example, a locally adapted decision tree is created in [9], which can be
used to explain the prediction of a specific observation.

If a RF is to be interpreted, a decision tree as a surrogate model has the advantage that the
tree structure is preserved. However, surrogate models that are trained for high predictive
similarity cannot be guaranteed to actually use the same decisions as the original model. Instead
of training a surrogate model it is suggested to select one decision tree from the ensemble of
the RF to be interpreted as a surrogate model [10]. The decision tree that represents the RF
best should be used and is therefore referred to as the most representative tree (MRT). This
method has the particular advantage that the structure of the surrogate model and its decisions
correspond directly to a part of the RF and are not just similar to it. MRTs therefore combine
the predictive performance and interpretability of decision trees with the stability of RF. They
also offer the advantage that they can be used more easily for external validation. A single
MRT can be printed in a publication, while an RF can only be made available as an object of the
programming language used or via a website interface.

2. Key related work

The idea of using a decision tree of the RF ensemble as a surrogate model was first reported
n [10]. In their approach, the MRT is selected as the tree that is most similar on average to
the other trees in the ensemble. Three distance metrics are proposed to calculate the pairwise
similarities between the decision trees. For example, the difference in the predictions for a test
data set is calculated for each pair of trees. Alternatively, the similarity can be measured by
whether the observations of a test data set are assigned to the same terminal nodes of two trees.
The third one measures pairwise similarity via the proportion of split variables used in both
trees. However, it only focuses on the proportion of split variables used in both trees, but not
where they are used in the tree. Whether a variable was used as the first split variable in one
tree and the last in the other is not taken into account. In addition, it ignores if a split variable
is used more than once in the trees.

However, these two aspects are are assigned to in the further development of this measure in
[11]. Depending on the position of the split variable, its influence on the similarity is weighted,
thus it is called weighted splitting variables (WSV). In [11], the three measures from [10] and
the WSV measure were used for the selection of an MRT and their performance was compared.
The results showed that the structure of the RF can be best represented with the WSV measure,
as the predictions on a validation data set were most similar to the ones from the RF.

In [12], MRTs are also selected, but the authors suggest that in some cases it is better to use
more than one MRT as a representation for an RF. To obtain this small ensemble of representative
trees, the pairwise distances of the decision trees are clustered using the partitioning around
medoids (PAM) algorithm. To do this, it is necessary to specify in advance how many clusters
and thus MRTs are to be found. In addition, the aspect of interpretability was not investigated
and no analyses were performed to determine whether the prediction quality actually changes
depending on the number of MRTs.



However, MRTs have a disadvantage. When creating the RF, not all variables from the training
data set are available to the trees at each split [5]. A random subset of the variables is drawn in
each node, which means that potentially at some splits only noise variables are available for
splitting. This can result in uninformative splits that do not improve the prediction quality of
the RF but lead to deeper trees than necessary. Such uninformative splits can also occur in the
selected MRTs. In addition, important variables are not necessarily used as top splits at the root.
Decision trees and thus MRTs are easier for a human to interpret if they only consist of a few
splits. To overcome this problem, artificial representative trees (ART) should be created.

3. Specific research questions, hypothesis and objectives

Resulting from the open topics from the previous section, my research will focus on the following
four objectives:

1. To develop and evaluate an algorithm that generates an ART based on an existing RF.

Analogous to the MRT, a surrogate model is to be created which can be interpreted instead
of the RF.
To evaluate if ARTs provide better interpretability compared to MRTs. The hypothesis
is that ARTs are not as deep as MRTs, use a larger proportion of effect variables and a
smaller proportion of null variables while having comparable prediction performance.
(WP 1 & WP 2)

2. To compare ARTs with other surrogate models regarding to the same criteria as for the
first objective, to assess if the higher effort for generating ARTs compared to classical
surrogate models is worthwhile. I will also investigate which of the methods should be
preferred for which type of data set. (WP 3)

3. To compare ensembles of ARTs and MRTs, based on the clustering approach from [12]
with regards to the same criteria as the previous objectives. (WP 4)

4. To investigate whether other tree algorithms than the classic CART from [13] can improve
prediction performance and interpretability of ARTs. Binary splits are often used in RF,
as splits can be concatenated to any depth. However, trees with more than two splits in
each layer are easier to understand than a deep concatenation of several splits. (WP 5)

4. Research approach, methods, and rationale for testing the
research hypothesis

The following five work packages (WP) are defined to achieve the four objectives above.

WP 1 To create an ART, a new decision tree is grown iteratively using a greedy algorithm. First,
all stumps that are possible with the available training data are created. The similarity to
the RF is calculated for all stumps and the one with the greatest similarity to the RF is
used. Analogous to MRT, various measures can be used to define similarity, such as the
split variables used or the prediction errors. Then, in each additional iteration, all trees
are created that are possible with exactly one more split. If one or more trees fulfill these



WP 2

WP 3

WP 4

WP 5

criteria, the one with the greatest improvement in similarity or prediction is selected
and a new iteration is started. If none of these trees improves the similarity or does not
improve the prediction if the similarity remains the same, the algorithm stops.

To compare the use of a single ART with a single MRT, I will first perform simulation
studies. The advantage of simulation studies is that the relationships between the predictor
variables and with the target variable are fully known. For the performance comparison
of an ART and an MRT, I will initially consider only regression problems using the same
structure as in [11]. In the first scenario, the data set consists exclusively of binary
variables, with a small number of effect variables with large effects. The other scenarios
represent variations of this, for example by using many effect variables with lower effect
sizes, correlated variables, and interaction effects. The last scenario finally uses continuous
variables. As quality measures, I will compare the prediction performance and consider the
split variables used as well as the tree depth. The deviation of the predictive performance
of the ARTs and MRTs from the RF is calculated using the MSE. In addition, it is measured
how many of the splits use noise variables, which is called the false discovery rate (FDR).
It is also measured how many effect and noise variables are used as split variables, as well
as the runtime. Afterward, ARTs and MRTs will be compared with a benchmark data set
from OpenML (https://openml.org/). Analogous to the simulation study, the deviation of
the MSE and the tree depth are measured. In addition, the R2 and the Akaike information
criterion (AIC) are estimated.

I will perform extensive simulation studies analogous to WP 2 to compare ARTs with
a decision tree as a surrogate model. Then the ARTs and decision trees will be applied
to clinical or benchmark data sets. I will enlarge the simulation studies to cover more
complex designs (e.g. classification problems and high-dimensional data) so that they are
more similar to clinical use cases. For the performance comparison, I will additionally
focus on the stability of the results by ARTs and decision trees. For this, I will compare
the similarity of several ARTs and decision trees that were created on the same data. The
various measures from [10] and WSV from [11] will be used as similarity measures so
that the similarity is evaluated concerning various aspects.

For the comparison of ensembles of MRTs and ARTs based on a clustering of the trees of
the RF, I will first extend the approach of [12]. For example, I will integrate an automatic
selection of the number of clusters using the improvement in prediction quality. As long
as the prediction quality increases by adding a cluster and thus a representative tree, the
number of clusters will be further increased. For the simulation study and benchmark
data application, data sets containing latent subgroups will be used, as in these cases it is
assumed that an ensemble of representative trees is more suitable than a single one. The
remaining procedure for the simulation will be done in the same way as for WP 2. This
will also increase the focus on predictive quality and interpretability as quality measures
compared to [12] for MRTs.

To obtain ARTs that do not only split binary, the ART algorithm from WP 1 should be
extended. For example, splitting with the same variable several times in succession could
be favored by a higher weighting. As soon as the split variable of a node is used a second
time for splitting in the child node, the two nodes can be combined into a single node
with more than two child nodes. I will again investigate the performance of this approach
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using simulations. In addition, I will vary the hyperparameter for weighting the repeated
splits with the same variable to examine its influence on the quality criteria mentioned in
WP 2. The tree depth and the number of terminal nodes are also compared.

5. Results and contributions to date

The aim of developing an ART algorithm was successfully realized, which is shown in algorithm
1. We integrated the implementation of the algorithm into the R package timbR (https://github.
com/imbs-hl/timbR), which is based on trees built with the R package ranger [14]. ARTs can
now be used for global interpretation of the RF so that, for example, a physician can understand
the model’s predictions. ARTs also enable local interpretability, so that the individual decisions
of the ART can be compared with known knowledge from the literature or can be discussed
with a physician as is medically plausible. ARTs can also be used as a prediction model with the
option of interpreting individual predictions.

I have performed the simulation study mentioned in WP 2 and the comparison of an ART
and MRT using the benchmark data. The ART was superior in terms of interpretability and the
use of fewer noise variables. In fig 1, it can be seen that the predictions of the ARTs were more
simular to the RF than those of the MRTs. In addition, ARTs used almost no noise variables.
However, ARTs are somewhat more conservative in the use of effect variables than MRTs
(results not shown, but displayed in [15]).

The manuscript was accepted as a conference paper at the XAI-2024 conference under the
title "Construction of artificial most representative trees by minimizing tree-based distance
measures”[15]. This study was funded by the Medical Section of the University of Liibeck
(J01-2024 to BL).

For WP 3, I have compared ARTs and decision trees as surrogate models in a few simple
structured simulated scenarios. The MSE of the predictions and the FDR of the ARTs were
smaller than those of the decision trees. In addition, the ARTs again consist mainly of effect
variables, whereas the decision trees use a higher proportion of noise variables. Nevertheless,
the predictions of the decision trees were more similar to those of the RFs than ones of the
ARTs. However, the process is not finished yet. For the final simulation study, I will extend the
simulated scenarios to several different ones and will focus on the structure of more complex
clinical data. For example, I will use gene expression data as a possible application example. In
addition, I will investigate both classification and regression problems.

For the ensembles of representative trees in WP 4, we compared various clustering methods
such as k-means or hierarchical clustering using the ward method with simulations using
different numbers of MRTs. This was done as part of a master’s thesis that I co-supervised. The
most stable results in terms of prediction quality were provided by k-means. In addition, we
used various similarity measures, of which WSV from [11] provided the best prediction quality.

6. Expected next steps and final contribution to knowledge

The comparison between single ARTs and MRTs has been completed. ARTs were found to be a
better alternative to MRTs, as their results are better and easier to interpret. The code for the
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Algorithm 1 Generate ART
Require: random forest RF, similarity metric metric
Extract all split_points from RF
Reduce split_points using only important variables
Build all possible stumps using split_points
Estimate similarities of all stumps to RF using metric
Select stump with maximum similarity — ART_candidate
repeat
ART < ART candidate
Build all possible trees with one additional split using split_points
Estimate similarities of all new trees to RF using metric
Select new tree with maximum similarity — ART _candidate
until similarity(ART_candidate) < similarity(ART)
return ART
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Figure 1: Comparison of the performance of ARTs (orange) and MRTs (blue) for all five simulation
scenarios in 100 repetitions. The deviation from the prediction performance of the RF was measured
using the MSE. The fractions of covered noise variables were calculated by the number of noisevariables
that occur at least once in the surrogate model divided by the number of all simulated noise variables.

simulation as well as for the ART algorithm is freely available to enable other scientists to use
it easily (https://github.com/imbs-hl/ART_paper; https://github.com/imbs-hl/timbR).

Next, I will extend the performance and interpretability comparison of ARTs with decision
trees as surrogate models to identify the advantages and disadvantages of both methods in
different scenarios.

Additionally, I will integrate the use of ensembles of ARTs into the R package timbR and
carry out the planned comparison with MRTs. We assume that prediction performance and
interpretability can be further improved through the use of ARTs.

Furthermore, I will further improve the performance by extending the CART based ART
algorithm so that a very easy-to-interpret model is available for a wide variety of data structures,
which also has a good prediction quality.

Finally, I will apply ARTs in ongoing collaborative research projects in Neuro- and Cardio-
genetics to provide interpretable models for the clinical context. For example, to use an ART to
investigate the influence and interaction of genetic variants in prediction modeling of age at
onset in X-linked dystonia-parkinsonism.
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In summary, the use of ARTs offers promising opportunities to develop interpretable models
for the clinical context, and further research will lead to a surrogate model that is easy to use
and interpret.

Acknowledgments

Thanks to Prof. Silke Szymczak and Dr. Bjérn-Hergen Laabs for their supervision and support
with my doctoral thesis.

References

(1]

(2]

[10]

L. Grinsztajn, E. Oyallon, G. Varoquaux, Why do tree-based models still outperform
deep learning on tabular data?, 2022. URL: http://arxiv.org/abs/2207.08815. doi:10.48550/
arxiv.2207.08815, arXiv:2207.08815 [cs, stat].

X. Chen, H. Ishwaran, Random forests for genomic data analysis, Genomics 99 (2012) 323—
329. URL: https://www.sciencedirect.com/science/article/pii/S0888754312000626. doi:10 .
1016/j.ygeno.2012.04.003.

M. S. O. Brieuc, C. D. Waters, D. P. Drinan, K. A. Naish, A practical intro-
duction to Random Forest for genetic association studies in ecology and evolu-
tion, Molecular Ecology Resources 18 (2018) 755-766. URL: https://onlinelibrary.
wiley.com/doi/abs/10.1111/1755-0998.12773. doi:10.1111/1755-0998. 12773, _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/1755-0998.12773.

K. Doubleday, J. Zhou, H. Zhou, H. Fu, Risk controlled decision trees and random
forests for precision Medicine, Statistics in Medicine 41 (2022) 719-735. URL: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/sim.9253. doi:10.1002/sim.9253, _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/sim.9253.

L. Breiman, Random Forests, Machine Learning 45 (2001) 5-32. doi:10.1023/A:
1010933404324.

G. Heinze, C. Wallisch, D. Dunkler, Variable selection — A review and recom-
mendations for the practicing statistician, Biometrical Journal 60 (2018) 431-449.
URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/bimj.201700067. doi:10. 1002 /bimj .
201700067, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/bimj.201700067.

C. Molnar, Interpretable Machine Learning: A Guide for Making Black Box Models Ex-
plainable, 2 ed., 2022. URL: https://christophm.github.io/interpretable-ml-book.

U. Johansson, C. Sonstrod, T. Lofstrom, One tree to explain them all, in: 2011 IEEE Congress
of Evolutionary Computation (CEC), 2011, pp. 1444-1451. URL: https://ieeexplore.ieee.org/
abstract/document/5949785. doi:10.1109/CEC.2011.5949785, iSSN: 1941-0026.

E. Parimbelli, T. Buonocore, G. Nicora, W. Michalowski, S. Wilk, R. Bellazzi, Why did AI get
this one wrong? - Tree-based explanations of machine learning model predictions, Artificial
Intelligence in Medicine 135 (2022) 102471. doi:10.1016/j.artmed.2022.102471.

M. Banerjee, Y. Ding, A.-M. Noone, Identifying representative trees from ensembles,
Statistics in medicine 31 (2012) 1601-16. doi:10.1002/sim. 4492.


http://arxiv.org/abs/2207.08815
http://dx.doi.org/10.48550/arXiv.2207.08815
http://dx.doi.org/10.48550/arXiv.2207.08815
https://www.sciencedirect.com/science/article/pii/S0888754312000626
http://dx.doi.org/10.1016/j.ygeno.2012.04.003
http://dx.doi.org/10.1016/j.ygeno.2012.04.003
https://onlinelibrary.wiley.com/doi/abs/10.1111/1755-0998.12773
https://onlinelibrary.wiley.com/doi/abs/10.1111/1755-0998.12773
http://dx.doi.org/10.1111/1755-0998.12773
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.9253
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.9253
http://dx.doi.org/10.1002/sim.9253
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
https://onlinelibrary.wiley.com/doi/abs/10.1002/bimj.201700067
http://dx.doi.org/10.1002/bimj.201700067
http://dx.doi.org/10.1002/bimj.201700067
https://christophm.github.io/interpretable-ml-book
https://ieeexplore.ieee.org/abstract/document/5949785
https://ieeexplore.ieee.org/abstract/document/5949785
http://dx.doi.org/10.1109/CEC.2011.5949785
http://dx.doi.org/10.1016/j.artmed.2022.102471
http://dx.doi.org/10.1002/sim.4492

[11]

[12]

[13]

[14]

B.-H. Laabs, A. Westenberger, I. R. Konig, Identification of representative trees in ran-
dom forests based on a new tree-based distance measure, Advances in Data Analysis
and Classification (2023). URL: https://doi.org/10.1007/s11634-023-00537-7. doi:10. 1007/
s11634-023-00537-7.

A. Sies, I. Van Mechelen, C443: a Methodology to See a Forest for the Trees, Journal of
Classification 37 (2020) 730-753. URL: https://doi.org/10.1007/s00357-019-09350-4. doi:10.
1007/s00357-019-09350-4.

L. Breiman, J. Friedman, C. Stone, R. Olshen, Classification and Regression Trees, Taylor &
Francis, 1984. URL: https://books.google.de/books?id=JwQx-WOmSyQC.

M. N. Wright, A. Ziegler, ranger: A Fast Implementation of Random Forests for High
Dimensional Data in C++ and R, Journal of Statistical Software 77 (2017) 1-17. URL: https:
//www.jstatsoft.org/index.php/jss/article/view/v077i01. doi:10. 18637 /jss.v077.101.

B.-H. Laabs, L. L. Kronziel, I. R. Kénig, S. Szymczak, Construction of Artificial Most Repre-
sentative Trees by Minimizing Tree-Based Distance Measures, in: L. Longo, S. Lapuschkin,
C. Seifert (Eds.), Explainable Artificial Intelligence, Springer Nature Switzerland, Cham,
2024, pp. 290-310. doi:10.1007/978-3-031-63797-1_15.


https://doi.org/10.1007/s11634-023-00537-7
http://dx.doi.org/10.1007/s11634-023-00537-7
http://dx.doi.org/10.1007/s11634-023-00537-7
https://doi.org/10.1007/s00357-019-09350-4
http://dx.doi.org/10.1007/s00357-019-09350-4
http://dx.doi.org/10.1007/s00357-019-09350-4
https://books.google.de/books?id=JwQx-WOmSyQC
https://www.jstatsoft.org/index.php/jss/article/view/v077i01
https://www.jstatsoft.org/index.php/jss/article/view/v077i01
http://dx.doi.org/10.18637/jss.v077.i01
http://dx.doi.org/10.1007/978-3-031-63797-1_15

	1 Context and motivation
	2 Key related work
	3 Specific research questions, hypothesis and objectives
	4 Research approach, methods, and rationale for testing the research hypothesis
	5 Results and contributions to date
	6 Expected next steps and final contribution to knowledge

