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Abstract

Amidst the remarkable performance of deep learning models in time series classification, there is
a pressing demand for methods that unveil their prediction rationale. Existing feature importance
techniques often neglect the temporal nature of time series data, focusing solely on segment importance.
Addressing this gap, this paper introduces a local model-agnostic method akin to LIME, which generates
neighbouring samples by randomly perturbing segments of the original instance. Subsequently, weights
are computed for each neighbouring instance based on its distance from the original, elucidating its
influence. Parameterised event primitives (PEPs) are then extracted from these perturbed samples,
encompassing increasing and decreasing events and local maxima and minima points. These primitives
are clustered to form prototypical events that capture the temporal essence of the data. Leveraging
these events, computed weights, and black box predictions, a simple linear regression model is trained
to provide local explanations. Preliminary experiments on real-world datasets showcase the method’s
efficacy in identifying salient subsequences and points and their importance scores, thereby enhancing
comprehension of produced explanations.
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1. Introduction

The ubiquity of sensors has facilitated the generation of extensive time series data across
domains such as finance [1], healthcare [2, 3], human activity recognition [4], and environmental
monitoring [5]. These data, crucial for informed decision making, require effective time series
classification techniques. However, despite the success of deep learning models in various
domains, including time series classification tasks, their lack of interpretability remains a
significant challenge. Explainable Artificial Intelligence (XAI) has emerged to address this issue,
aiming to provide transparent explanations for machine learning models. There are a multitude
of XAI methods for image and tabular data; however, applying such methods to time series
data presents unique challenges due to the temporal nature of the data and the requirement
for domain knowledge [6, 7]. Locally Interpretable Model-Agnostic Explanation (LIME) has
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become a popular method for explaining black-box models [8]. However, its application to
time series data is hindered by the difficulty of segmenting data while preserving temporal
characteristics [9]. To address these challenges, we propose a novel Local Model Agnostic XAI
method, akin to LIME, for interpreting black-box time series classifiers. Our approach does not
require the segmentation of time series data. It provides detailed explanations of salient parts,
including detecting trends such as increasing and decreasing local maxima and local minima. By
enhancing the interpretability of black box time series classifiers, our method fosters a deeper
understanding of model decisions and facilitates informed decision-making.

2. Related Works

Recent advancements in explainable artificial intelligence (XAI) have sparked significant interest
in understanding black box models, particularly in time series classification. Although XAI
research has focused predominantly on computer vision and natural language processing tasks,
adapting these methods to time series analysis presents unique challenges due to the temporal
nature of the data [6]. Schlegel et al. [7] explored various common XAI techniques, including
saliency [10], LIME [8], SHAP [11] and LRP [12], to interpret deep learning-based time series
classification models. Zhou et al. [13] have enriched the interpretability landscape by enhancing
Class Activation Maps (CAM) and Grand-CAM with backpropagation. Simultaneously, the
work described in [14] introduced TSViz, a saliency map-based methodology later integrated
into TSXplain [15] to uncover the logic behind Deep Neural Networks (DNNs) in time series.
These methodologies combine salient regions, instances, and statistical features, fostering
natural language explanations. Furthermore, Vielhaben et al. [16] introduced DFT-LRP, a
tailored variant of Layer-wise Relevance Propagation (LRP), specifically designed to address the
complexities of time series analysis by incorporating a virtual inspection layer.

While many existing methods are model-specific and rely on internal model structures, there
is a growing interest in model-agnostic explanations that identify key features without being tied
to a particular model architecture. However, adapting feature importance-based explanations
to time series data requires careful consideration of the temporal dimension. Among feature-
importance methods, LIME stands out as a popular approach, but its direct application to time
series data requires thoughtful preprocessing to ensure interpretability. Guileme et al. [17]
and Neves et al. [18] adapted LIME for deep learning-based time series classification by using
longer segments for perturbation. Still, these approaches are limited by fixed window sizes.
To overcome this limitation, Silvio et al. [19] introduced the NNsegment, which identifies
homogeneous regions in time series and employs various perturbation techniques for robust
explanations. Furthermore, Schlegel et al. [20] expanded the LIME approach by employing six
distinct segmentation methods, but the challenge remains to understand the significance of
identified segments. Hence, we present a local model-agnostic Explainable Artificial Intelligence
(XAI) approach, akin to LIME, tailored for elucidating deep learning time series classifiers. Our
method effectively highlights crucial input data segments that significantly impact the black-
box model’s inferential process. Additionally, it provides insights into why these identified
segments are important by providing information about their nature, such as whether they are
increasing/decreasing events or local minima/maxima points on the time series input.



3. Method

This section introduces the proposed Local Model Agnostic (XAI) method tailored for time
series classifiers. The steps involved in the approach are detailed in Figure 1.
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Figure 1: Step-by-step illustration of the proposed approach.

3.1. Generating Neighbourhood Samples

Our approach distinguishes itself from existing methods by avoiding fixed-interval segmentation
for interpreting time series classifiers. Instead, we employ random perturbation of segments in
the original time series, offering a flexible and tailored approach to generating perturbed data.
These segments can be replaced by zero, the segment mean, or the total mean of the series.
Importantly, perturbation is used solely to generate neighbourhood samples, and rather than
employing segments as features for the linear regression model, as detailed in subsection 3.3,
we utilise clusters of parameterised event primitives.

3.2. Distance Computation and Neighborhood Weighting

After generating neighbouring samples through perturbation, we calculate the distance (d)
between the explained instance (X;) and the neighbouring sample. In our scenario, we utilize
dynamic time warping (DTW) as the distance metric, which is ideal for handling temporal data
with varying speeds or time scales. Subsequently, we calculate the weight of each neighbouring



instance according to an exponential kernel, denoted as 7y, which assigns higher weights to

42
instances similar to X;. The exponential kernel is defined as: 7x. = e (02>.

Here, o (sigma) represents the bandwidth parameter that controls the width of the kernel. It
regulates how quickly the weight assigned to neighbouring instances decreases with increasing
distance from the instance being explained. Lower values of o indicate a narrower kernel, focus-
ing more on closer neighbours, while higher values result in a broader influence, considering
distant neighbours as well.

3.3. Transforming Perturbed Data via Parameterised Event Primitives (PEPs)

Parameterised Event Primitives (PEPs) are vital for capturing domain-specific events within
the time series data. By extracting PEPs as shown in Figure2, we can effectively represent
the temporal characteristics of events as parameters, thus facilitating the learning process for
interpretable models such as linear regression and decision trees [21, 22]. These PEPs encompass
various event types, including increasing and decreasing events, which capture parameters such
as start time, duration, and average gradient value, and local maximum and minimum events,
which capture time and corresponding value parameters. A structured three-step process was
implemented to transform neighbouring samples in a manner conducive to training interpretable
models. Initially, parameterized events were extracted from each time series sequence within the
perturbed data. These events were encapsulated as tuples containing the relevant parameters.
Subsequently, the parameterized events were flattened to enable the application of clustering
algorithms, such as KMeans, resulting in the generation of distinct clusters. Determining the
optimal number of clusters was facilitated by leveraging the silhouette method. Finally, event
attribution was carried out, mapping the extracted events to their respective clusters. This
process yielded a matrix wherein each cell represented the count of events associated with a
specific cluster for a given instance. The event attribution matrices for each parameterized
event primitive were combined to create a tabular dataset suitable for training interpretable
models.

3.4. Training Linear Model

In our approach, we utilize transformed data, black box predictions of neighbouring samples,
and their corresponding weights to train interpretable models similar to LIME. We employ ridge
regression, a regularised linear model renowned for its interpretability and robustness. Ridge
regression aims to minimize the following loss function:

f = argming Y, 1x(2) (3 — (2)- B° + Al B3
2€Z

Here, ﬁ represents the optimized coefficients obtained by minimizing the weighted sum of
squared errors. 7 (z) assigns weight to each neighbouring sample z, j, is the probability score
predicted by the classifier for the perturbed instance z, (z) is a perturbed instance and A serves as
the regularisation parameter, which governs the penalty imposed on the coefficients to prevent
overfitting. In this case, the weights of the linear model learnt using a least-squares procedure
denote the relative importance of each feature or each PEP cluster.
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Figure 2: Examples of events extracted from a single time series in the ECG200 dataset (a) increasing
and decreasing events (b) local max and local min events .

After training the interpretable linear model, we identify the most significant features based
on their importance scores. Here, the features correspond to clusters of Parameterised Event
Primitives (PEPs) such as increasing clusterl, increasing cluster2, decreasing cluster1, and so
on. We then visualise the extracted events of the instance to be explained, which belong to the
top clusters, as shown in Figure 3.

4. Experimental Setup

Our preliminary experiment evaluated our method on two widely used univariate time series
datasets: ECG200 and GunPoint from the UCR Archive [23], a renowned repository for time
series classification tasks.

Our method provided local explanations for a black box model, the Fully Convolutional
Network (FCN), built using the PyTorch-based tsai library [24]. The FCN was configured with
default kernel sizes 7, 5, 3 and filter sizes 128, 256, 128 for its convolutional layers. The datasets
were partitioned into training sets (70%), validation sets (15%), and test sets (15%) to facilitate
robust evaluation. We used early stopping during training to avoid overfitting, with a patience
parameter set to 15 and a minimum delta of 0.001. Additionally, to ensure accuracy and stability,
the model was trained 100 times with randomised splits for training, validation, and testing. In
particular, our method achieved an average accuracy of 85% and 86% on the ECG200 dataset
for training and testing, respectively, and 98% for both the validation and testing sets of the
GunPoint dataset.

5. Result and Discussion

In this section, we present the results of our experiments and discuss their implications. The
method was deployed to offer local explanations for predictions generated by a deep learning-



based time series classifier, with fidelity metrics that evaluate the faithfulness of these expla-
nations. We computed the local fidelity score across different replacement methods for the
perturbation to generate neighbouring samples. From each dataset, 100 instances were randomly
selected from the test set, and the resulting average fidelity score and standard deviation were
calculated. Table 1 presents the fidelity scores obtained using the zero and mean replacement
methods. In the ECG200 dataset, the fidelity scores were 0.76 and 0.67 for the zero and mean
replacements, respectively. Similarly, in the GunPoint dataset, the fidelity scores were 0.64 and
0.44 for zero and mean replacements, respectively.

Table 1
Mean and standard deviation of explanation faithfulness across various perturbation replacement
methods on ECG200 and GunPoint datasets.

Dataset Zero (Std) Mean (Std)

ECG200  0.76 (0.08)  0.67 (0.10)
GunPoint  0.64 (0.10)  0.44 (0.17)

These results indicate that our method demonstrates varying fidelity across different datasets
and replacement methods. The higher fidelity scores obtained using zero replacement suggest
that this method may better preserve the local interpretability of the model predictions compared
to mean replacement. Furthermore, the observed standard deviations highlight the variability in
the fidelity scores, indicating potential sensitivity to perturbation methods. This underscores the
importance of careful consideration when selecting perturbation techniques to ensure reliable
and consistent explanations.
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Figure 3: The explanation generated by the method highlights segment significance, relevance scores,
and event types (e.g., increasing, decreasing, local maximum, local minimum) in the time series data for
the black box model.



The explanation produced by our method, as depicted in Figure 3, not only highlights the
significance of each part of the time series instance for the black box model’s decision-making
process but also provides the relevance score associated with each segment or point, along
with the types of events, such as increasing, decreasing, local maximum, and local minimum.
Overall, our results demonstrate the effectiveness of our method in providing local explanations
for predictions of deep learning-based time series classifiers. However, further analysis and
experiments are needed to fully understand the factors influencing fidelity and optimize our
approach for broader applications.

6. Conclusion

Our XAI method, incorporating random perturbation and transformation using parameterized
event primitives, shows promising results in enhancing interpretability for time series classifiers.
While our current experiment has focused on two univariate time series datasets, future research
will extend to other univariate and multivariate data to widen its applicability. Further explo-
ration into diverse perturbation techniques and comparative analyses with existing methods will
provide a comprehensive understanding of our approach’s effectiveness. Overall, our method
contributes to advancing explainable Al in time series classification, offering valuable insights
into model predictions with ongoing efforts for refinement and expansion.
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