
An Approach to Detect Abnormal Submissions for CodeWorkout
Dataset⋆

Alex Hicks∗, Yang Shi, Arun-Balajiee Lekshmi-Narayanan, Wei Yan and Samiha Marwan

Dept of Computer Science, Virginia Tech, Blacksburg, VA
Dept of Computer Science, Utah State University, Logan, UT
Intelligent Systems Program, University of Pittsburgh, Pittsburgh,PA
School of Informatics, Computing and Cyber Systems, North Arizona University, Flagstaff, AZ
Dept. of Computer Science, University of Virginia, wCharlottesville, VA

Abstract
Students’ interactions while solving problems in learning environments (i.e. log data) are often used to support students’ learning. For
example, researchers use log data to develop systems that can provide students with personalized problem recommendations based on
their knowledge level. However, anomalies in the students’ log data, such as cheating to solve programming problems, could introduce
a hidden bias in the log data. As a result, these systems may provide inaccurate problem recommendations, and therefore, defeat their
purpose. Classical cheating detection methods, such as MOSS, can be used to detect code plagiarism. However, these methods cannot
detect other abnormal events such as a student gaming a system with multiple attempts of similar solutions to a particular programming
problem. This paper presents a preliminary study to analyze log data with anomalies. The goal of our work is to overcome the abnormal
instances when modeling personalizable recommendations in programming learning environments.

Keywords
CS1, Introductory Programming, Dataset Cleaning, Dataset Standards, Educational Data Mining

1. Introduction
Students cheating to submit programming solutions is a
common occurrence. Cheating can be of any kind – copying
solutions to the problem available online, by other students
learning programming with the course or by other means of
plagiarism. Generally, researchers have explored methods
to curb cheating in the context of academic integrity [1].
Some techniques that could work [2] include the detection
of collusion and continual feedback to students to encourage
them towards better academic integrity. There is a tendency
for students to cheat when solving programming puzzles
or practice assignments. When online log data is collected
using the interaction logs of the interfaces for programming
assignments, there is a risk for some of these anomalies to be
recorded among regular student interaction logs. This could
potentially affect student modeling approaches that use the
interaction logs to make recommendations for students [3].

Student modeling in the context of solving programming
assignments like the Normalized Student Modeling for Pro-
gramming [4] use Error Quotient and Watwin score that
measure changes help estimate student knowledge or under-
standing [4, 5]. In other cases, student modeling facilitates
the identification and prediction of students’ learning pro-
files in tutoring systems, which, in turn, enables such sys-
tems to be adaptive and personalized to students’ needs [6].
This makes them sensitive to the quality of the data and
anomalies created by students gaming the system or cheat-

CSEDM’24: 8th Educational Data Mining in Computer Science Education
(CSEDM) Workshop, June 14, 2024, Atlanta, GA
⋆
You can use this document as the template for preparing your publica-
tion. We recommend using the latest version of the ceurart style.
∗Corresponding author.
Envelope-Open awh4kc@vt.edu (A. Hicks); yang.shi@usu.edu (Y. Shi);
arl122@pitt.edu (A. Lekshmi-Narayanan); wei.yan@nau.edu (W. Yan);
samihamarwan21@gmail.com (S. Marwan)
GLOBE https://awhicks.github.io/ (A. Hicks); https://a2un.github.io
(A. Lekshmi-Narayanan); https://weiyanedtech.com/ (W. Yan);
https://www.samihamarwan.com/ (S. Marwan)
Orcid 0000-0002-2143-2633 (A. Hicks); 0000-0001-6486-4340 (Y. Shi);
0000-0002-7735-5008 (A. Lekshmi-Narayanan)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

ing / plagiarizing solutions may cause the model to overesti-
mate or underestimate student knowledge or understanding
of the introductory programming concepts.

For example, a study conducted by Hellas et al. found
instances where students copied content to complete their
assignments [7]. This behavior can significantly compro-
mise the quality of student modeling approaches applied
to these data. Moreover, these cheating instances may lead
to erroneous predictions, revealing a threat to the field of
student modeling technology.

Another example discussed by Sosnovsky and col-
leagues [8] discusses student modeling anamolies observ-
able as sudden changes in the learning rate of a student
when learning with an adaptive educational system. This
could be attributed to any form of assistance offered to the
student by a more experienced or knowledgeable peer in-
dicated Low-High-Low or High-Low-High patterns in the
student’s learning rate.

To address this challenge, researchers have developed
tools for detecting plagiarism in students’ code (e.g., [9]).
One of the most popular approaches is “The Measure Of
Software Similarity (MOSS)”, an open-source tool designed
to identify similarities between students’ programming as-
signments [9]. However, to our knowledge, there is no
evidence that researchers apply cheating detection methods
on online shared data before applying log data analysis and
student modeling.

We present a work in progress, where we look into this
aspect closely in order to mitigate anamolies in student
submissions : 1) using classical methods like Measure of
Software Similarity (MOSS), 2) alternative approaches of
analyzing log data). We use the CodeWorkout (CWO) pro-
gramming dataset (as introduced in [10])1. While the use of
generative AI has been very popular now, this dataset was
collected before 2021 when Generative AI was not generally
used to cheat when submitting programming solutions.

1https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=3458

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:awh4kc@vt.edu
mailto:yang.shi@usu.edu
mailto:arl122@pitt.edu
mailto:wei.yan@nau.edu
mailto:samihamarwan21@gmail.com
https://awhicks.github.io/
https://a2un.github.io
https://weiyanedtech.com/
https://www.samihamarwan.com/
https://orcid.org/0000-0002-2143-2633
https://orcid.org/0000-0001-6486-4340
https://orcid.org/0000-0002-7735-5008
https://creativecommons.org/licenses/by/4.0/deed.en


avg_score median_score first_score last_score n_attempts one_shot condition

X-Grade (before) -0.209966 -0.187436 -0.287831 0.062299 0.220599 -0.359111 Unclean

X-Grade (after) 0.326563 0.440488 0.457784 0.333629 0.376384 0.234074 Clean

Table 1
Comparison between correlation data across potential indicators with final course grade before and after cleaning suspicious
submissions.

Figure 1: MOSS results for comparing two CWO submissions

2. Methods & Analysis
In this work, we compare two ways to analyze abnormal
submissions:
Proposed method: Log Data Analysis. We used two

main identifiers to explore anomalies such as suspected
cheating behaviors from submission log data: the number
of submission attempts before completing the exercise, and
the elapsed time between correct submissions. The choice of
these variables correlates with the possibility that students
who attempt and submit a correct solution on their first
attempt could be cheating. We discuss more details on this
below.

Baseline method: MOSS. MOSS is a tool used to detect
cheating in programming submissions. The tool works by
taking into all the students’ submissions and comparing
them pairwise for similarities. We compared students’ code
submissions using MOSS to identify similarities in submis-
sions for a selected set of problems from a collection of easy,
medium, and hard assignments made available on CWO.

3. Results & Discussions

3.1. MOSS Detection Results
We further evaluated whether accessible and common cheat-
ing detection tools such as MOSS can be applied to detect
students’ cheating in this dataset. However, we found that
running MOSS across CWO exercises led to high rates of
similarity on a majority of students’ submissions. In addi-

tion, we found no clear difference between students whom
we previously identified and those whom we believe that
have engaged authentically with the CWO exercises. We
hypothesize that this failure could be due to the size of the
solutions to several CWO exercises. Some solutions to these
exercises could be just 10 lines of source code as these prob-
lems are well-constrained and target specific learning goals.
Hence, these problems may not have possible alternative
solutions (refer Figure 1). Students like those in the exam-
ple may end with 93% of their solutions matching despite
no indications of anomalous behaviour. This indicates that
identifying an acceptable threshold for MOSS detection on
CWO exercises is unreasonable and highlights the need for
other options.

3.2. Log Data Analysis Detection
We calculate students’ “one shot” percent, or the percent of
CWO exercises where a student correctly answers an exer-
cise on their first attempt. In Table 1, this is represented as
the one_shot column and is calculated as a correlation with
the student’s final course grade. Once this value was calcu-
lated, we were able to compare the differences between the
correlations on a student’s first score on a given problem to
how often they were getting their first attempt fully correct
and found a suspicious difference. Figures 2 shows the rela-
tionship between the first scores of the students’ submission
to the exercises and their final exam scores, and the figure
on the right shows the distribution of the first scores of the
students’ submission. While many students performwell on



Figure 2: Cluster plot of student first submission scores on exercises (y-axis) and their final grades(x-axis) (left); Histogram of
the number of students (y-axis) with the number of exercises they achieved correctly (x-axis) on first submissions.

their first submissions of exercises, showing their mastery
of programming skills, only a small subset match this perfor-
mance in the course as a whole. Specifically, students who
perform well in the CWO exercises on their first attempt,
often do not perform well for their final grade of the course.
This preliminary data analysis did not make intuitive sense
and led us to further investigate this phenomenon using
more traditional methods, including MOSS.

4. Limitations and Future Work
This preliminary investigation focused only on CWO sub-
missions, but we hope this data cleaning approach can be
generalized to other datasets that use the ProgSnap2 format.
We also hope to continue investigating the metadata about
submissions included in this format to find more accurate in-
dicators of cheating behavior in the programming snapshot
data. While MOSS is generally used to compare final stu-
dents’ submissions with other final students’ submissions,
in future work, we will consider the case for running MOSS
with sequential data where submissions made on platforms
like CWO that allow multiple submissions. For example, we
could compare attempt 1 of a student 1 with attempt 2 of
student 2 and so on to see if a students copy each others’
solutions from their first attempt onwards or after trying
multiple attempts, failing and then cheat to proceed to the
next programming problem on the CWO platform.

Acknowledgments
We thank the contributions by Dr. Thomas Price for his
guidance on this work. We also thank the 2023 Session of
LearnLab Summer School Organizers and our sponsors Dr.
Peter Brusilovsky and SPLICE project PI(s) for bringing us
all together to work on this.

References
[1] S. E. Allen, R. F. Kizilcec, A systemicmodel of academic

(mis) conduct to curb cheating in higher education,
Higher Education (2023) 1–21.

[2] O. Karnalim, Simon, W. Chivers, B. S. Panca, Edu-
cating students about programming plagiarism and
collusion via formative feedback, ACM Transactions
on Computing Education (TOCE) 22 (2022) 1–31.

[3] P. Brusilovsky, E. Millán, User models for adaptive
hypermedia and adaptive educational systems, in: The
adaptive web: methods and strategies of web person-
alization, Springer, 2007, pp. 3–53.

[4] A. S. Carter, C. D. Hundhausen, O. Adesope, The nor-
malized programming state model: Predicting student
performance in computing courses based on program-
ming behavior, in: Proceedings of the eleventh annual
international conference on international computing
education research, 2015, pp. 141–150.

[5] T. W. Price, D. Hovemeyer, K. Rivers, G. Gao, A. C.
Bart, A. M. Kazerouni, B. A. Becker, A. Petersen,
L. Gusukuma, S. H. Edwards, et al., Progsnap2: A
flexible format for programming process data, in: Pro-
ceedings of the 2020 ACM Conference on Innovation
and Technology in Computer Science Education, 2020,
pp. 356–362.

[6] R. Umer, T. Susnjak, A. Mathrani, L. Suriadi, Current
stance on predictive analytics in higher education: Op-
portunities, challenges and future directions, Interac-
tive Learning Environments 31 (2023) 3503–3528.

[7] A. Hellas, J. Leinonen, P. Ihantola, Plagiarism in take-
home exams: Help-seeking, collaboration, and system-
atic cheating, in: Proceedings of the 2017 ACMConfer-
ence on Innovation and Technology in Computer Sci-
ence Education, ITiCSE ’17, Association for Comput-
ing Machinery, New York, NY, USA, 2017, p. 238–243.
URL: https://doi.org/10.1145/3059009.3059065. doi:10.
1145/3059009.3059065.

[8] S. Sosnovsky, L. Müter, M. Valkenier, M. Brinkhuis,
A. Hofman, Detection of student modelling anomalies,
in: Lifelong Technology-Enhanced Learning: 13th Eu-
ropean Conference on Technology Enhanced Learn-
ing, EC-TEL 2018, Leeds, UK, September 3-5, 2018,
Proceedings 13, Springer, 2018, pp. 531–536.

[9] K. W. Bowyer, L. O. Hall, Experience using ”moss”
to detect cheating on programming assignments, in:
FIE’99 Frontiers in Education. 29th Annual Frontiers in
Education Conference. Designing the Future of Science
and Engineering Education. Conference Proceedings

https://doi.org/10.1145/3059009.3059065
http://dx.doi.org/10.1145/3059009.3059065
http://dx.doi.org/10.1145/3059009.3059065


(IEEE Cat. No. 99CH37011, volume 3, IEEE, 1999, pp.
13B3–18.

[10] Y. Shi, R. Schmucker, M. Chi, T. Barnes, T. Price, Kc-
finder: Automated knowledge component discovery
for programming problems., International Educational
Data Mining Society (2023).


	1 Introduction
	2 Methods & Analysis
	3 Results & Discussions
	3.1 MOSS Detection Results
	3.2 Log Data Analysis Detection

	4 Limitations and Future Work

