Using Protégé-2000 in Reuse Processes

H. Sofia Pinto!, Duarte Nuno Peralta!, and Nuno J. Mamede?

! Grupo de Inteligéncia Artificial, Departamento de Eng. Informética
Instituto Superior Técnico
Av. Rovisco Pais, 1049-001 Lisboa, Portugal
{sofia,duarte}@gia.ist.utl.pt
2 1.2F INESC-ID/IST - Spoken Language Systems Laboratory
Rua Alves Redol 9, 1000-029 Lisboa, Portugal
{Nuno.Mamede}@inesc-id.pt

Abstract. There is already a considerable number of ontology-based
tools. In order to better choose the appropriate tool and to better use
its capabilities, tools need to be compared and the experiences in using
them should be shared. We have been using Protégé-2000 in an ontology
reuse experience. In this case, we reused an ontology kept in the On-
tolingua Server library. In this article, we report our experience in using
the import translators for OKBC and the support provided by the tool
in revision/extension processes. The analysis provided in this article is
from an user point of view.

1 Introduction and Motivation

There is already a considerable number of ontology-based tools. At this moment
these tools are attracting an increasing number of new users of all kinds, from
naive users to power users. As more tools become available, the problem of inter-
operability between different tools becomes more important. Different tools will
be combined in different ways to support varied and increasingly more complex
ontology related processes. For instance, one may import an ontology available in
the library of a particular ontology building environment into another ontology
building environment and extend the imported ontology with more knowledge.
The resulting ontology may then be translated into another knowledge represen-
tation language and introduced in an evaluation tool.

In order to better choose the appropriate tool and to better use its capa-
bilities, tools need to be compared and the experiences in using them should
be shared. This analysis has got to be performed in much more detail than a
brochure-like collection of features, specially for power users. That is, we must
know the limits of available technology.

We have been using Protégé-2000 [8] to build an ontology. In this case, the
ontology was built through a reuse process. We reused an ontology kept in the
Ontolingua Server library [4]. In this article, we report our experience in using
the import translators for OKBC [2] of Protégé-2000 and the support provided
by this tool in reuse processes.



In this article, we begin by referring existing evaluation studies about ontology-
based tools and their shortcomings. Then we describe the context of our expe-
rience and the actual reuse process that was performed using Protégé-2000. We
describe the problems and strong points of Protégé-2000 in our case-study. Fi-
nally, we explain the reasons underlying these problems and analyze related
work.

2 Evaluation of Ontology-Based Tools

There are already some studies evaluating ontology-based tools in the literature,
like WonderTools [3] and the survey on ontology-based tools of OntoWeb [9].

In [3] an evaluation framework is proposed and a comparative study of
several ontology-building tools was made. This was the first systematic eval-
uation/comparison study of ontology-based tools, more precisely of ontology
building tools. However, one important dimension that is not analyzed by this
framework is the study of the interoperability between the different tools. For
instance, the existence of import/export translators is not analyzed.

In [9] a general survey of ontology-based tools is presented, namely for ontol-
ogy building, merge, evaluation, annotation, and storage and query tools. This
survey proposes an evaluation framework for each kind of tool, and compares
each tool against the corresponding framework. Although this survey provides
an evaluation of each kind of tool, the interoperability between different tools
is not analyzed in detail. For instance, the limitations of current translators are
not analyzed.

3 Context of the Experiment

We are involved in the development of ontologies to be used in a Natural Lan-
guage dialogue system. This dialogue system is to be placed in a bus terminal, as
a ticket-vending/information machine. An important requirement of this applica-
tion is that the language must be Portuguese (although the concepts represented
in an ontology are, in general, language independent,® the terms used to refer
to those concepts are not). The construction of this ontology will involve several
subontologies in different domains related to traveling, for instance commercial
transactions (buying and selling), geographical information and time.

We began the development of this ontology with the subontology of time. One
of the requirements that was a-priori imposed was that the ontologies should be
developed in a locally installed tool. Therefore, the tool that was chosen was
Protégé-2000.

31In Portuguese there is a concept that finds no parallel in other languages: “Saudade”,
which is a kind of nostalgia, home sick, is a genuine Portuguese concept.



4 A Reuse Process in Protégé-2000

The building process of the ontology of time has already went through several
stages. In Fig. 1 we represent part of this process. The activities performed with
Protégé-2000 are shadowed.

Import from Ontolingua To build our ontology, we reused the Simple-Time
ontology? from the Ontolingua Server. We used the OKBC tab plug-in® to
import the ontology into Protégé-2000.

Analysis - identification of missing and misplaced knowledge Before per-
forming the analysis, we had already applied a manual reengineering [1]
process to the source code. The result of this process was one possible
conceptual model for Ontolingua’s Simple-Time ontology. At this stage, we
compared this model with the translated version of the ontology. We found
that the translation process provided the taxonomic hierarchy of concepts
(classes+instances). However, it did not translate all Ontolingua functions
and it did not translate any relation or axiomatic definition. Moreover, some
functions were misplaced.

Revision - rearrangement and extension of knowledge The knowledge we
found misplaced in the ontology was relocated. In what concerns missing
knowledge, we introduced the relations and functions. Following the guide-
lines provided in the documentation of Protégé-2000, we left the introduction
of axioms for a later stage.

Analysis - technical evaluation of source ontology Having the taxonomy,
relations and functions, we evaluated the Simple-Time ontology in the On-
tolingua Server according to the criteria proposed in [6]. For that we used
both the source code and the conceptual model. The reasons why we used
both were: (1) if we only use the conceptual model we are not able to ana-
lyze the syntactical errors® (language conformity) and (2) if we only use the
source code we loose the overall perspective of the ontology which is crucial
to perform a thorough analysis.”

Revision - Correction, Natural Language Translation and Extension
The problems found in the source ontology were corrected in the version
kept in Protégé-2000. Then we translated all the names of the knowledge
pieces represented in the ontology into Portuguese. Finally, the axioms were
added to our ontology using Protégé Axiom Language (PAL). Moreover,
some concepts, that are needed to describe the time domain for our particular
application, were added.® For instance, half an hour.

4 1t defines 14 classes, 209 instances, 17 relations and 14 functions.

% http://protege.stanford.edu/plugins/okbctab/okbc_tab.html

5 For instance, the equals relation in Ontolingua is defined for both time-points
and time-ranges (polymorphic refinement). However, there is an error, since the
definition for time-ranges introduces two variables that are not declared.

 For instance, without the conceptual model, we could miss the fact that functions
month-of and month-name-of are the same function.

8 The description of the requirement specification performed in this development pro-
cess is out of the scope of this paper.



1
Ontolingua Server
Source Code
Download Source

Ontolingua Server

3

Protege—2000
Import Simple-Time
Export to OKBC
OKBC Code Protege—2000
Simple-Time

taxonomy

Possible
Conceptual Model

Ontolingua Server

Evaluation Document:
Missing & Misplaced

Protege—2000 g P

Knowledge

Rearrangement &
Extension

Analysis

Protege—2000

Evaluation Document:
Simple-Time

Technical Evaluation
taxonomy 8 l ;

relations/functions

Protege—2000
Correction,

Natural Language Translation &
Extension

Protege—2000

Simple-Time
taxonomy
relations/functions

NL expressions
axioms

Fig. 1. Building process

In the following sections we analyze the use of Protégé-2000 to perform
this process. The focus is placed on the advantages and disadvantages of us-
ing Protégé-2000 to build our time ontology. Since the tool was not used in the
analyses stages of this process, we will not address them in this paper.

4.1 Problems after Importing from Ontolingua

To import the Simple-Time ontology from the Ontolingua Server, the OKBC
tab plug-in was used. We found that part of the knowledge represented in the
source ontology and imported using this translator was lost.

Comparing the definitions of the same concepts after using Ontolingua’s ex-
port translator and after using Protégé-2000 import translator we can see that
there are important differences. Take, for instance, the definition of the Meets



(define-relation Meets (7time-range-1 7time-range-2)
"a time range ?time-range-1 ends at the same time a time range ?time-range-2 starts."
:iff-def (Equals (End-Time-0f ?time-range-1)
(Start-Time-0f 7time-range-2)))

Fig. 2. Definition of relation Meets in Ontolingua

relation in Ontolingua, Fig. 2. The Ontolingua OKBC export translator repre-
sented this binary relation as a slot, Fig. 3. However, the OKBC import transla-
tor of Protégé-2000 lost this relation. Since axioms are outside the OKBC model,
the axioms defining the relations were not translated, for instance the axioms
defining the relation Meets.

Although one can argue that relations (and functions) are also outside the
OKBC knowledge model,? the same problem seemed to affect the translation of
slots. For instance, we tried to import the Agents ontology from the Ontolingua
Server. The agent class is defined as a frame with a template slot name. After
importing this ontology into Protégé-2000, all slots were lost.

Some of the functions were imported, but not all. For instance, the function
+ involving time-points, time-ranges and durations was lost. Moreover, the
functions that were imported, were not translated as expected. For instance, the
function year-of is defined in the source ontology with domain time-point.
However, after the translation, the slot that was created was not attached to the
time-point class. It was only attached to the classes calendar-year, calendar-
-date and universal-time-spec. These concepts were characterized in their
Ontolingua [7] definitions by having one (has-one) year—-of. Moreover, the min-
imum cardinality constraints of the slots corresponding to these functions were
lost.

Summarizing, the problems we found in the translation of the Simple-Time
ontology were:

— All knowledge represented using the define-relation primitive was not
translated, for instance the relation Meets.

— Some functions were imported, but most were lost. The only slots that were
created in Protégé-2000 correspond to functions that appear in the definition
of classes using the has-one primitive. Although the slot was created, it was
attached to the incorrect class (when compared to the source code) and the
minimum cardinality constraints were lost.

4.2 Rearrangement and Extension of Knowledge

In the beginning of this stage we had just identified what knowledge had been
lost and misplaced. At this time, we decided to rearrange misplaced knowledge
and only add the missing relations and functions.

9 Classes, instances, slots and facets.



(define-okbc-frame Meets

:frame-type :slot

:direct-types (Relation Binary-Relation)

rown-slots ((Arity 2))

:primitive-p common-lisp:nil

:sentences

(...
(=> (Meets ?time-range-1 7time-range-2)
(Equals (End-Time-Of 7time-range-1)

(Start-Time-0f ?time-range-2)))

)

Fig. 3. Definition of relation Meets in OKBC using Ontolingua’s export translator

Part of the rearrangement and extension done at this stage is shown in Fig. 4.
For example, with the translated version of the ontology, it was not possible to
characterize the day of a given time-point. Since the class of time-points
lost all its attributes, we could not partially characterize specific time-point in-
stances. This can be done in the Simple-Time ontology at the Ontolingua Server.
The only classes for which we could do this were calendar-year, calendar-date
and universal-time-spec.

The tool proved to be a good help, since relocating knowledge simply corre-
sponds to a drag&drop action of the mouse. Like in a regular frame-based system,
another way of relocating a slot is removing the slot from the class where it is
wrongly associated and attach it to the correct class. In fact, the intuitive use
of the tool is one of its main features.

To manually introduce the missing slots, we used the OKBC code produced
by Ontolingua’s export translator as a guide, Fig. 3. We simply created the
slots that were defined in this translation and attached them to the appropriate
classes. All relations (17) and lost functions (9) were introduced.

4.3 Correction, Natural Language Translation, and Extension

In the beginning of this stage we had a translated version of the Simple-Time
ontology, consisting of the whole taxonomy, the relations and functions. We also
had the technical evaluation document. The problems found in the analysis of
the source ontology were corrected (Correction), the names in the ontology were
translated into Portuguese (Natural Language Translation) and the axioms that
were lost during the import translation from Ontolingua were added (Extension).

Correction consisted mainly in changing the ranges and domains of functions
and relations. In Protégé-2000, this means relocating slots (change of domain) or
changing the value of the allowed-classes facet of the slot (change of range).

After correcting the taxonomy and before starting to write axioms, the on-
tology was translated into Portuguese, because axiom definitions refer to names
of frames in the ontology, and changes to these names are not propagated to
the textual definitions of the axioms. One major advantage of using this tool to
perform this task was that once we change the name of a frame, this change is
immediately propagated through the entire taxonomy.



Time-Point Translated Rearranged Time-Point
& Entended
No slots - ] Slot: Year-of
Max. Cardinality 1
Z} -t Slot: Month-of
- - - Max. Cardinality 1
Calendar-Date Calendar-Year Universal-Time-Spec | -
= ~ _ - 5t Slot: Day-of
Slot: Year-of Slot: Year-of Slot: Year-of L Max. Cardinality 1
Max. Cardinality 1 Max. Cardinality 1 Max. Cardinality,l" Slot: Hour-of
Slot: Month-of Slot: Month-of - -
- - Max. Cardinality 1
Max. Cardinality 1 Max. Cardinality 1 Siot Minute—of Y
. Slot: Day-of T - inute
Slot: Day-of Y P Max. Cardinality 1
Max. Cardinality 1 Max. Cardinality 1, -7 B i Slot: Second-of
Slot: Minute-of - k- Max. Cardinality 1
Max. Cardinality 1}--7
Slot: Second-of ~ 4
Max. Cardinality 1
y Calendar-Date Calendar-Year Universal-Time-Spec
Slot: Ye_ar—ot . Slot: Year-of Slot: Year-of
Min. Cardinality 1 Min. Cardinality 1 Min. Cardinality 1
Slot: Month-of
. s Slot: Month-of
Min. Cardinality 1 Min. Cardinality 1
Slot D:_iy—oi o Slot: Day-of
Min. Cardinality 1 .Min Cardinality 1
Slot: Hour-of
Min. Cardinality 1
Slot: Minute-of
Min. Cardinality 1
added knowledge Slot: Second-of
Min. Cardinality 1

Fig. 4. Rearrangement and Extension of time-point and its subclasses

Finally, we added knowledge that was completely lost in the translation pro-
cess: axioms. To write axioms in Protégé-2000 the PAL constraints tab plug-in©
was used. PAL constraints are part of the PAL toolset plug-in for Protégé-2000.
The idea is to allow the user to write constraints over the possible values of
instances that cannot be represented using only classes, slots and pre-defined
facets.!! PAL is a limited predicate logic extension of Protégé-2000. Its syntax
is similar to KIF [5]. However, statements like defrelation and deffunction
are not supported. The PAL language is completely integrated with the Protégé-
2000 knowledge model. Constraints are instances of the :pal-constraint class.
When writing a PAL constraint, we can use any slot as a predicate, for in-
stance (start-time-of (time-range x) (time-point y)). If the slot has a
maximum-cardinality of 1, it can also be used as a function. In this case,
(start-time-of (time-range x)) represents (time-point y). The PAL con-
straint checking mechanism can be called by the user, to show which constraints
are violated and by which instances. It can also be called programmatically by
an application that uses the Protégé-2000 API.

The PAL constraint checking mechanism also has a trace mechanism that
allows us to follow the evaluation of a given constraint. This is very useful when
writing constraints, since it helps to understand why they are not working as we

10 nttp://protege.stanford.edu/plugins/paltabs/PAL_tabs.html
1 For instance, value-type, minimum and maximum cardinalities, minimum and
maximum values allowed.



(defrange ?time-range-1 :FRAME TIME-RANGE)

(defrange ?time-range-2 :FRAME TIME-RANGE MEETS)

(forall ?time-range-1

(forall ?time-range-2
(=> (and (MEETS ?time-range-1 ?time-range-2)
(own-slot-not-null END-TIME-OF ?time-range-1)
(own-slot-not-null START-TIME-OF ?time-range-2))
(= (END-TIME-OF 7time-range-1)
(START-TIME-OF ?time-range-2)))))

Fig. 5. Axiom written in PAL

think they should. However, this tracing mechanism only traces predicates and
functions predefined in PAL language, for instance < for numbers, and only one
at a time. It would be also useful to provide trace-ability of user-defined slots
(treated in PAL as predicates or functions).

Although the PAL constraint checking mechanism is useful, it is not very
easy to use at first. One of the reasons is because knowledge represented in KIF
axioms that is not supported by PAL has to be transformed before it can be
incorporated. PAL axioms consist on a set of variable range definitions and a
predicate that must hold over those variables. An example of an axiom written
in PAL is shown in Fig. 5.

This first user’s reaction to PAL was not a very good one. This could be
easily changed with a more detailed documentation. We found some examples
on how to write a new constraint in the documentation, but some examples on
how to transform an axiom written in KIF (or any other language) into a PAL
constraint would also be useful.'?

5 Translator Analysis

We analyzed the OKBC-tab plug-in code, in order to better understand why
knowledge was being lost or misplaced. The plug-in starts by connecting to an
OKBC compliant server (in our case, the Ontolingua Server) and then uses the
OKBC protocol to get information about the ontology being imported. The main
import procedure, getClassDetails, starts with an initial set of classes and then
goes down the is-a hierarchy getting for each class its name, documentation,
instances, template slots,'3 and for each template slot the value of the facets
value-type, maximum-cardinality and minimum-cardinality. When reaching
instances it gets their names, slots and slot values. This procedure leaves out
any knowledge that is not explicitly represented in the definition of a class or
instance frame. Moreover, any knowledge that is represented as an own slot in
a class frame is also lost.

12 Since our goal was to reuse the definitions implemented in KIF (or Ontolingua).
13 The knowledge model of Protégé-2000 does not include own slots attached to classes.



In the case of the Simple-Time ontology all relations are represented in OKBC
as slot frames and are not explicitly referred in the definition of any class frame.
Therefore, all relations were lost.

However, this still did not explain why in the Agents ontology the slot name
associated to the agent class was not translated. We found that the OKBC plug-
in does not import frames whose names are keywords and name is a keyword in
OKBC.

We also discovered the causes of misplaced knowledge. For instance, the
time-point class is defined in Ontolingua as being the domain-of of the function
year-of. Since the definition of the class time-point in OKBC only makes
reference to the year-of function in the own-slot domain-of, the corresponding
slot is not created. However, the class calendar-date is defined in Ontolingua as
having one (has-one) year-of. In this case, the OKBC definition of calendar-
-date explicitly mentions that year—-of is a template slot of this class. Therefore,
the slot is created in Protégé-2000 and attached to the calendar-date class.

Knowledge about a slot is explicitly represented in the definition of a class
frame in OKBC if in the Ontolingua definition of that class some specific prim-
itives are used. If we use the define-class primitive we can use the has-one
or has-some primitives to constraint cardinalities. If we use the define-frame
primitive to define a class we can specify one of the following items: (1) the name
of the template slot, (2) its maximum-cardinality, (3) minimum-cardinality
or (4) value-type. Regarding cardinalities, Protégé-2000 only uses the values
of cardinalities to assess whether the slot is multiple-valued. However, there are
some problems. The maximum cardinality is always one and the minimum car-
dinality is not used at all.

To summarize:

— The import translator of Protégé-2000 does not import knowledge that is not
explicitly represented in the definition of a specific class or of an instance in
the Ontolingua Server’s OKBC code.

— Frames (classes, instances and slots) whose name is a keyword of the OKBC
protocol are not imported.

— All knowledge represented in own-slots of classes is not imported.

— Not all Ontolingua primitives can be used to explicit knowledge about tem-
plate slots in the definition of a class.

— All facets, except value-type, are lost. Although the translator looks for
the facets maximum-cardinality and minimum-cardinality, Protégé-2000
only uses that information to assess the multiplicity of the slot.

6 Related Work

A translation process involving the Simple-Time ontology in the Ontolingua
Server is described in [10]. In this case the export translator of Ontolingua into
Loom was used. At that time, the conclusions were that the automatic translators
were still at draft level. Although they were useful to provide initial versions,



considerable human interaction was needed to improve the automatic versions.
The two problems found at that time were:

Mismatch of modeling styles The way knowledge is modeled in Ontolingua
is different from the way it is usually modeled in Loom. The constructs
provided by each language form a representation ontology that is different for
each language. A translator between two languages must start by mapping
between the two representation ontologies. In general, building a translator
is easier if these ontologies are similar.

Inference engine bias Even if the knowledge is modeled without a specific
application in mind, it is usually modeled considering certain inferences. For
instance, in Loom, knowledge is usually modeled considering that it is going
to be used by its built-in inference engine.

In our case study we found that:

— Both the Ontolingua Server and Protégé-2000 are OKBC-compatible, so
there is no mismatch in modeling styles.

— However, the inference engine bias is very strong in our case. For instance,
when it comes to axioms, the PAL language has a rather different style
from KIF. The PAL toolset is a constraint-checking rather than theorem-
proving mechanism. This means that PAL only checks constraints based
on the instances in the ontology. So, axioms written in PAL have to make
strong closed-world assumptions about the knowledge that is being modeled.
Moreover, in order to simplify the axioms, we added a slot representacao-
-numerica (number-representation) to all classes that are subclasses of inte-
gers (hour-number, year-number, etc.). This was done because in PAL the
relations <, > and = are already defined for integers.

7 Conclusions and Future Work

In this article we report a reuse experience that involved translation, rearrange-
ment, correction and extension of an ontology using Protégé-2000. We tried to
evaluate the support provided by this tool in reuse processes. We have found
that the OKBC import translator of Protégé-2000, although useful for provid-
ing an initial version, is not ready to be used in a fully automatic translation
process. We analyzed the source code of the OKBC-tab plug-in and discovered
the source of the problems that we had identified.

Regarding usability, we have found the tool to be intuitive and easy to use.
The tool eased our reuse process. In particular, we have found that it was more
cost effective (time+effort) to use the tool rather than building the whole time
ontology from scratch in Protégé-2000.

In future we plan to build other ontologies by means of reuse, namely the
other subontologies needed for the natural language dialogue system, using the
support of available tools. We also plan to improve the OKBC import translator
of Protégé-2000.



8 Acknowledgements

We thank the anonymous reviewers for their usefull comments. We also thank the
support provided by the technical support teams of Protégé-2000 and Ontolingua
Server. We thank FCT.

References

9.

. Blazquez, M., Fernandez, M., Garcia-Pinar, J. M., Goméz-Pérez, A.: Building On-

tologies at the Knowledge Level Using the Ontology Design Environment. In: Pro-
ceedings of the Knowledge Acquisition Workshop (KAW98), Banff, Alberta, 1998.

. Chaudri, V., Farquhar, A., Fikes, R., Karp, P., Rice, J.: Open Knowledge Base

Connectivity 2.0.3. Knowledge Systems Laboratory, KSL-98-06, Stanford University,
1998.

Duineveld, A. J., Stoter, R., Weiden, M. R., Kenepa, B., Benjamins, V. R.: Won-
dertools? A comparative study of ontological engineering tools. In: Proceedings of
the Knowledge Acquisition Workshop (KAW99), Banff, Alberta, 1999.

Farquhar, A., Fikes, R., Rice, J.: The Ontolingua Server: A Tool for Collabora-
tive Ontology Construction. In: Proceedings of the Knowledge Acquisition Workshop
(KAW96), Banff, Alberta, 1996.

. Genesereth, M.: Knowledge Interchange Format. In:J. Allen and R. Fikes and E.

Sandewall (eds.): KR91 Proceedings, Morgan Kaufmann: 599-600, 1991.
Go6mez-Pérez, A., Juristo, N., Pazos, J.: Evaluation and Assessment of the Knowl-
edge Sharing Technology. In: N.J.I. Mars (eds.): Towards Very Large Knowledge
Bases, 10S Press: 289-296, 1995.

Gruber, T.: A Translation Approach to Portable Ontology Specifications. Knowledge
Acquisition, 5: 199-220, 1993.

Noy, N.F., Sintek, M., Decker, S., Crubézy, M., Fergerson, R.W., Musen, M.: Cre-
ating Semantic Web Contents with Protégé-2000. IEEE Intelligent Systems 48(2):
60-71, 2001.

OntoWeb: Deliverable 1.3: A survey on ontology tools, 2002.

10. Russ, T., Valente, A., MacGregor, R., Swartout, W.: Practical Experiences in Trad-

ing Off Ontology Usablhty and Reusablhty In: Proceedings of the Knowledge Ac-
quisition Workshop (KAW99), Banff, Alberta, 1999.



