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Abstract—Today’s computer users and system designers face
increasingly vast amounts of data, yet lack good tools to find
pertinent information within those datasets. Linked data tech-
nologies add invaluable structure to data, but challenges remain
in helping users understand and exploit that structure. One
important question users might ask about their data is “What
entities are similar to this one, and why?” or “How similar
are these two entities to one another, and why?”. Our work
focuses on using the semantic content of linked data not only
to facilitate the process of finding similar entities, but also
to produce automatically-generated and human-understandable
explanations of what makes those entities similar. In this paper,
we formulate a definition of an “explanation” of similarity, we
describe a system that can produce such explanations efficiently,
and we present a methodology to allow the user to tailor how
“obvious” or “obscure” the provided explanations are.

I. INTRODUCTION

Today’s world is a world of data. As technology advances,
it becomes easier and easier to collect and store vast amounts
of data. Much of this data can be viewed in terms of nodes
with properties and relationships, or edges, among those nodes
— that is to say, it can be represented as a graph. Once a
dataset has been represented in a graph format, such as with
Semantic Web [1] or other linked data technologies [2][3], it
can easily be combined with data from different sources. In
this way, linked data allows already-vast datasets to be readily
combined and connected, giving users and programs access to
more data than ever before. The challenge, then, is in making
sense of this data.

Some of the data analysis questions that are emerging
include the following: How does one entity in the linked
data relate to another entity, possibly derived from a different
source? How does a given entity relate to the rest of the
data? What are the similarities between two entities, and why?
There are also related data search and retrieval questions to be
tackled, such as “Find all entities similar to this entity” and
“Find groups of entities that are similar to each other.”

To solve these problems, work has been done at Raytheon
BBN Technologies (BBN) to devise a similarity measure
called the Structural Semantic Distance Measure (SSDM),
which leverages both the structural and semantic content
of linked data to find similar entities. SSDM is based on
SimRank [4], a highly domain-general similarity measure
with an efficient approximate calculation. SSDM improves on
SimRank by incorporating the semantic content of edge labels,
and by achieving greater independence of ontological choices.

Raw numerical similarity scores provide very little insight
to users about what those scores mean, so users often want
an explanation of how a score should be understood and
interpreted. In this paper, we formulate a definition of an
“explanation” of an SSDM score that ensures that the explana-
tion is both human-understandable and well-grounded in how
SSDM scores are calculated. We also describe a system that
can produce such explanations efficiently.

Additionally, not all users will desire the same level of detail
in their explanations. Therefore, we present a methodology
for allowing the user to tailor how “obvious” or “obscure”
the provided explanations are. We expect that users who
are investigating an unfamiliar domain will prefer “obvious”
explanations that refer to common and well-known properties,
while expert users will prefer “obscure” explanations that shed
light on less well-known relationships and details.

A. Motivation

Our work is motivated by a number of problems in the
intelligence and military research communities. Many of those
problems are ubiquitous and have direct translation to business
intelligence, logistics, and planning. Take, for example, a
model of a large organization C with its associates, their
interactions, locations they visit, resources they use or produce,
and events in which they participate. Given this information,
one could explore the stated relationships among the con-
stituents of C, such as “show all transactions that involve
person X .” Beyond these simple information-retrieval tasks,
analysts might want to examine more complex (or less crisply
defined) interactions. For example, “show all associates similar
to Y ” could be a very useful query when trying to learn more
about person Y . Finally, given a subset S = s1, s2, ...sn of
members in the organization C, which might represent a group
that is suspect of participating in nefarious activities, a query
like “show all subsets of C similar to S” might be an excellent
way to discover other suspicious clusters in the organization.

Note that in the example above we did not have any a priori
knowledge of the organization other than its structure (which
in general is a directed graph) and the elements for which we
were searching. In particular, we did not assume any hierarchy,
types of relationships present, or any statistical properties
of the graph. It was also important that the queries were
phrased in a general way using the word “similar” to indicate a
degree of likeness, but not (necessarily) an exact match. Such
problems occur every day both in the military, intelligence, and



defense communities as well as in the business and civilian
worlds.

We have structured our algorithms and methodologies to
be applicable to any data expressing entities and relationships
between entities. Notably, much of the data encountered in the
military and intelligence domains deals with entities and the
relationships between them, and can therefore benefit from our
contributions.

Throughout this paper, we include examples from the movie
industry, drawn from a popular and widely accessible dataset
about movies, actors, directors, film genres, and so on [5]. One
can easily find direct analogies between this data and the types
of data encountered in the intelligence and defense domains.

II. BACKGROUND

The general problem of similarity is twofold: first, to
construct a measure of pairwise similarity so that a meaningful
similarity score can be calculated for any pair of entities
in a dataset; and second, to devise a method for efficiently
retrieving the entities that are most similar to a given entity.

In this section, we discuss a similarity measure developed
at BBN called the Structural Semantic Distance Measure
(SSDM). SSDM is an extension of existing work on calculat-
ing similarity over unlabeled, directed graphs. The contribution
of SSDM is to incorporate the semantic content contained
in edge labels, and to achieve a greater independence of
ontological choices for edge labeling.

Our work on SSDM builds off the SimRank algorithm by
Jeh and Widom [4]. We chose to base our work on SimRank
for the following reasons:

• SimRank is domain-independent in that it can be applied
to any data representing relationships between entities.
This is in contrast with domain-specific similarity algo-
rithms, such as those that can only be used to compare
documents [6], ontological categories [7], or some other
domain-specific data type.

• SimRank can be computed efficiently in approximation,
even over very large datasets, in contrast with measures
that rely on Singular Value Decomposition or other
computations that scale poorly [8].

• The approximate computation of SimRank can not only
determine the similarity between two entities efficiently,
but can also generate a list of entities that are most similar
to a given entity.

• The computation behind SimRank can be understood on
a conceptual level, which makes it possible to explain the
similarity score by referring directly to the computation
performed. This would not be possible using a similarity
measure that relied on more abstract calculations.

• SimRank looks beyond an entity’s immediate neighbor-
hood and features when determining similarity, which
enables it to incorporate a broader scope of information
about the structural context of entities.

All these positive attributes are retained in SSDM, along
with several additional improvements.

A. SimRank
SimRank is based on the intuition that “Two entities are

similar if they are related to similar entities.” While this
statement may seem trivial at first, it leads directly to a
simple mathematical definition of similarity: the similarity
score between two entities is the average pairwise similarity
of their neighbors, scaled by a decay factor.

Consider the example in Fig. 1. Intuitively, one would
imagine that Movie 1 and Movie 2 should be similar, because
they have two actors in common and they are both in the
same genre. Additionally, Director 1 and Director 2 should
be similar even though they have no immediate connections
in common, because they directed similar movies. SimRank
captures and formalizes this intuition.

..

Actor 1

.

Actor 2
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Movie 1
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Movie 2

.

Director 1

.

Director 2

Fig. 1: This figure depicts relationships that exist between
entities in a movie dataset. Director 1 and Director 2 have no
immediate neighbors in common, but they are similar because
they are related to similar movies

Each pair’s similarity is dependent on many other pairs,
which may seem to be a barrier to computing their scores.
Fortunately, this barrier is readily surmountable. On small
datasets the system can be solved with an iterative algorithm,
and on large datasets it can be solved using an efficient
approximate method outlined by Fogaras and Rácz in [9].
Our implementation of the SSDM calculation is based on this
efficient approximate method.

The algorithm outlined by Fogaras and Rácz relies on the
mathematical notion of a random walk through a graph, in
which an abstract walker steps from node to node through
the graph by following random edges [10]. In the original
SimRank paper, Jeh and Widom observed that the SimRank
score of two nodes can be approximated from the expected
meeting time of two random walkers starting at those two
nodes; a higher expected meeting time corresponds with a
lower SimRank score. Fogaras and Rácz used this observation
to develop an efficient and scalable algorithm for calculating
similarity scores.

In the algorithm proposed in [9], one random walker is
initialized per node in the graph, and each walker moves
along one edge per time step. To reduce the amount of
computation required, walkers are allowed to converge at their
meeting point, and are thenceforth treated as a single walker
without loss of correctness in the approximate calculation of
expected meeting times. Fig. 2 demonstrates how walkers
converge. Once the maximum number of steps has elapsed,



the run is halted. Repeated runs are performed and the data
are aggregated.
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Fig. 2: Walkers a, b, c, and d begin as independent walkers.
As they walk (shown progressing from left to right), they meet
one another. c and d meet at the first time step and converge.
a and b meet next. Finally, on the far right of the diagram, all
walkers have converged.

Additionally, to repair some deficiencies with the original
formulation of SimRank, walkers in Fogaras and Rácz’s algo-
rithm are incentivized to converge if they are near one another.
This is accomplished by randomly permuting all vertices in the
graph at the start of each time step, with each walker stepping
to the neighbor with the smallest index in the permutation.

The end result of one run of Fogaras and Rácz’s scalable
SimRank algorithm is a fingerprint graph which encodes the
first meeting times for each pair of walkers. Several runs
are conducted, and the fingerprint graphs are compiled into
a larger fingerprint database. The fingerprint database is pre-
computed and can be efficiently queried thereafter, either to
retrieve a similarity score between any two nodes, or to retrieve
the set of nodes with a similarity score greater than some
threshold with any given node.

The implementation we devised for calculating the SSDM
retains the basic structure of the computation described above,
including converging random walkers and permutation-based
convergence incentivization.

B. SSDM — The Structural Semantic Distance Measure

The Structural Semantic Distance Measure developed at
BBN is closely related to SimRank as described above, with
two key enhancements: SSDM incorporates the semantic con-
tent of edge labels, and SSDM is independent of ontological
choices — namely, which edge directionality each proposition
should have.

Whereas SimRank is a measure over unlabeled directed
graphs, SSDM incorporates edge labels. This makes it well-
suited to any data in subject-predicate-object format, such as
RDF or other linked data; subjects and objects are equivalent
to nodes in the graph, and predicates are equivalent to labeled
edges. The most important use of edge labels is in the way
expected meeting time is calculated. The original SimRank
computation defines “meeting time” as the time step when
two walkers step to the same node, at which point they
converge. The SSDM computation has a stricter condition on
convergence: namely, when two walkers meet, it only counts

as a convergence if they arrive at the same node on the same
step and they have traversed identical sequence of predicates
to that node. The reasoning behind this modification is that the
semantic meaning of edge labels is critical to the similarity
calculation. For example, two entities A and B may both be
related to a third entity C, but they are certainly not similar if
the relations in question are A isA C and B isNever C.

Additionally, SimRank only allows similarity to propagate
along in-edges, which means that the original computation of
SimRank only allows walkers to step backwards (that is, from
objects to subjects). This makes SimRank highly dependent
on ontological choices, because it is an arbitrary choice in
a directed graph whether each label should be phrased in
the forward or reverse direction. For example, the relation
A isComponentOf B could be equally expressed as B
hasComponent A; the choice of which direction is used
is arbitrary and can vary from dataset to dataset. Choosing
and enforcing consistent edge directionality is a difficult issue
in ontologies in general, so we did not want SSDM to be
heavily dependent on arbitrary edge direction choices. As a
result, SSDM allows walkers to walk both directions.

Note that allowing walks in both directions requires us to
distinguish a walker traversing A isComponentOf B from
a walker traversing B isComponentOf A, as these two
steps have very different semantic meanings. Therefore, in
SSDM, it is not enough for walkers to simply have traversed
identical predicates in order to converge; they must have
traversed those predicates in the same direction (in or out).

To illustrate the conditions on convergence required by
SSDM, consider the example of calculating the similarity
between two movies, War of The Worlds and Gladiator, as
shown in Fig. 3. Suppose Walker 1, starting from War of
The Worlds, traverses the predicates directedin, directedout,
hasActorout to reach Harrison Ford. If Walker 2 follows the
same predicates in the same order to reach Harrison Ford, as
is shown in Path A, then the two walkers will converge with
a meeting time of three steps. If Walker 2 instead follows
a different sequence of predicates, such as hasActorout,
hasActorin, hasActorout as shown in Path B, it will not
converge with Walker 1 because the two walkers did not follow
identical predicates to get there.

SSDM was designed as a domain-independent similarity
measure that would easily account for the semantics of labeled
graph data without being dependent on ontological choices.
This ability to incorporate semantic information is especially
important in domains with rich semantic context, and allows
SSDM to capture semantic nuances that are missed by less
sophisticated similarity measures. The significance of this
extra information in the measure is as-yet unassessed, but we
expect that SSDM should perform better than SimRank for
semantic graphs. In short, SSDM is an efficient, semantically-
grounded, and ontology-independent algorithm for discovering
similar entities in a linked dataset.
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Fig. 3: This diagram depicts two possible ways — path A
and path B — by which Walker 2 could meet Walker 1 at
the Harrison Ford node. If Walker 2 takes Path A, they will
converge. If Walker 2 takes Path B, they will not.

III. EXPLAINING SIMILARITIES

A similarity measure is useful for ranking items or pairs
of items, but a numerical score alone gives little insight into
why two entities are similar. The user can easily retrieve the
similarity score for two entities but is then left wondering:
what about those entities and their relations caused them to
receive a high or low similarity score? What is the nature of
their similarity? In addition, users may want more or less depth
in the explanations provided.

In order to enable users to answer this question, we sought
to build a system that could provide explanations for similarity
scores. Our three main contributions to the area of similarity
explanations are as follows:

1) We formulated a definition of an “explanation” for a
similarity score that is human-understandable, as well
as appropriately grounded in the way that the similarity
score was originally calculated.

2) We wrote a program to efficiently produce such expla-
nations.

3) We further developed a methodology for biasing ex-
planations towards either more “obvious” or more “ob-
scure” facts.

IV. DEFINITION OF AN EXPLANATION

A good explanation of a similarity score must be both
human-understandable and grounded in the original calcula-
tion of the similarity measure. An explanation that is not
human-understandable is hardly an explanation at all, and

an explanation that is generated by a computation which is
entirely unlike the original calculation of the similarity score
can hardly be considered an explanation of why that score was
produced.

Recall that the SSDM computation calculates similarity
scores based on repeated runs of converging random walkers.
The faster two random walkers tend to converge, the higher
the similarity score of their starting nodes will be.

It follows that for an explanation of a score to be well-
grounded in how SSDM scores are calculated, it must some-
how elucidate where and how walkers from the nodes in
question tend to converge, and whether these convergences
tend to happen rapidly or whether the walks are long. In order
for this information to also be human-understandable, it must
be relatively concise.

For these reasons, we decided that an explanation should
consist of a brief list of common convergence points, along
with a handful of concise chains of statements per convergence
point describing the “best” relationships linking each starting
node to that point. The “best” relationships may be the shortest
chains of statements, or the ones that tend to be traversed
most frequently, or (as explained later) relationships that are
appropriately obvious or obscure. Figure 4 shows an example
of an explanation of this form.

John Williams
{A New Hope, hasMusicContributor, John Williams}
{The Empire Strikes Back, hasMusicContributor,

John Williams}

Harrison Ford
{A New Hope, hasActor, Harrison Ford}
{The Empire Strikes Back, hasActor, Harrison Ford}

Star Wars (Film Collection)
{A New Hope, inCollection, Star Wars}
{The Empire Strikes Back, inCollection, Star Wars}

{Revenge of the Sith, hasSequel, A New Hope}
{Revenge of the Sith, inCollection, Star Wars}

{A New Hope, hasSequel, The Empire Strikes Back}
{A New Hope, inCollection, Star Wars}

...

Fig. 4: An excerpt from an explanation for the similarity
between Star Wars Episode IV: A New Hope and Star Wars
Episode V: The Empire Strikes Back, showing both one-
relationship chains and multi-relationship chains

By defining an “explanation” this way, we ensure that
users are presented with a coherent explanation of where and
how walkers from the nodes in question tend to converge.
Additionally, such explanations are also readily understandable
as explanations of what commonalities the nodes have, and
how they are related to each commonality.

V. OUR APPROACH

The most obvious way to extract an explanation for a com-
putation seems to be to inspect the path that the computation
followed to obtain its result. Unfortunately, in the case of our



SSDM calculation, such a strategy is inadequate. We have
established that we would like to present chains of relations
to the user. However, the fingerprint graphs produced by the
SSDM computation record only when and where the walkers
converged, discarding all information about the path taken
by the walkers; furthermore, discarding this information is
essential to the calculation as a whole to maintain acceptable
space and performance characteristics. While simply listing
convergence points does provide the user with some intelligible
information, it does not provide as rich an explanation as we
would like.

Therefore, our approach to explanation generation is to re-
run the SSDM calculation on a smaller scale at query-time, and
explicitly store the relations traversed rather than condensing
the results into a terse fingerprint graph. Two alterations were
required to make the modified SSDM calculation efficient
enough to provide an acceptable user experience at query time.
Both performance improvements were achievable because the
modified calculation uses just two walkers rather than starting
one walker at every node in the graph. Recall that the similarity
of two entities is derived from the expected meeting times of
walkers starting at those two entities. If we know in advance
which two entities we will be comparing, there is no need to
start walkers at any other entities. Because it is so efficient to
generate a pair of walks compared to a whole graph’s worth of
walks, we can afford to run the computation many times per
explanation request, and then choose from among the possible
explanations to display relevant results to users.

The first performance improvement strategy relates to the
permutation-based convergence strategy described in Sec-
tion II-A. Each step of the ordinary SSDM calculation begins
by randomly shuffling all edges in the graph. In the modified
calculation, only the two walkers’ immediate out-edges need
to be shuffled, which is almost always a vastly smaller number
of edges, and takes a negligible amount of time.

The second performance improvement strategy relates to the
strict edge-label requirements for convergence. In the ordinary
SSDM calculation, walkers frequently meet at the same node
but do not actually converge because they did not follow
the same predicates. In the modified calculation, we instead
require the two walkers to follow the same predicates as one
another. So, in the example given in Fig. 3, path B would never
be generated; instead, either Walker 1 and Walker 2 would
both follow a directed in-edge, or both would follow a
hasActor out-edge, or both would follow some other shared
edge not shown. If the two walkers were ever unable to follow
the same predicate in the same direction, then that run of
the computation would end. Coupling the edge options of the
two walkers greatly reduces the number of trials that fail to
converge, leading to a much more efficient calculation.

As a proof-of-concept for this methodology, we imple-
mented an explanation-generating component of Parliament,
an open-source triple store developed and maintained by
BBN [11]. In Parliament, users are able to browse and view
entities in the knowledge base, explore other triples containing
an entity, and view a list of similar entities and their SSDM

scores. As part of our work on similarity explanations, we
added a “why” button for each score, which users can click
to produce an on-demand explanation of that score. The
software behind the “why” button interacts with the underlying
Jena1 model of the data in Parliament to walk the graph and
produce an explanation using the methodology described in
this section. Even for datasets with millions of triples, such
as the movie dataset, preliminary findings show that accurate
explanations could be produced and displayed to the user
within seconds.

In summary, explanations for SSDM scores can be effi-
ciently computed on-demand at query time by re-running a
modified version of the SSDM random walker calculation.

VI. USING SALIENCE TO BIAS EXPLANATIONS

The final contribution we describe in this paper is a
method for incorporating salience into explanation generation.
Salience is a measure of how rare a fact is in a dataset. Our
goal was to produce the most “useful” explanations, which we
believed would be the explanations with the most salient facts,
because salient facts are rare and therefore highly descriptive.

We instead discovered that high-salience explanations often
come across as obscure because they can contain extremely
rare facts. Similarly, low-salience explanations often come
across as obvious because they contain extremely common
facts. Nonetheless, just as high-salience explanations often
have the upside of being very descriptive, low-salience ex-
planations often have the upside of revealing the broadest
and most general similarities rather than obscure trivia. Which
flavor of explanation is more “useful” likely depends on the
goals of the user and requires more research in an application
domain.

In this section we present the definition of salience as
applied to facts and explain how we constructed a salience-
weighted edge generator so that the explanations generated
would contain more or fewer high-salience facts. Note that
while the following descriptions will focus on biasing expla-
nations by salience, it can be used to favor facts based on any
numerical property of those facts.

A. Fact Salience

Salience is a measure of how rare a fact is in a dataset.
A fact in this case refers not to a whole statement, but to a
statement missing its subject or object; that is to say, struc-
tures of the form subject predicate blank or blank
predicate object (such as Spielberg directed
blank or blank directed Gladiator). Facts with a
subject and predicate are called left facts because all the
information they retain is on the left side of the statement.
Similarly, facts with a predicate and an object are called right
facts [12].

We now describe how the salience of a fact is calculated.
Consider o(f) to be the number of times a fact is expressed
in a set of unique subject predicate object triples.

1http://openjena.org



Consider also subj to be the number of unique subjects present
in those triples, and obj to be the number of unique objects.
For left facts, salience is calculated as follows:

salience(fact) =
1− log(o(fact))

log(obj)
(1)

And for right facts, the calculation is as follows:

salience(fact) =
1− log(o(fact))

log(subj)
(2)

The conceptual significance of subj and obj in these
equations is to count the number of times each fact could
potentially occur, since each left fact could potentially appear
with every object in the data set, and each right fact could
potentially appear with every subject. Facts that actually do
appear with almost every available subject or object are
extremely common, and are thus not very salient. Facts that are
expressed about very few of the available subjects or objects
are very rare and therefore highly salient. This intuition,
and the resultant calculation, is grounded in the information
theoretic concept of relative entropy, discussed in [13].

B. Weighting

The objective of salience weighting is to favor high- or low-
salience facts in the generated explanations. This bias can be
incorporated into the random permutation that is calculated at
the beginning of each time step. In the unweighted explanation
calculation, the random walkers choose which edge to take
by stepping to the neighbor with the smallest index in this
permutation. The original reason for the permutation was to
encourage walkers that are near one another to converge, but
it can also be modified to add other weights and biases into
the explanation-generation process.

In order to encourage walkers’ edge choices to favor more
salient edges, we would like high-salience edges to be more
likely to occur at low indices in the permutation. However,
we do not want the distribution of salience in the permutation
to be too consistent from trial to trial, otherwise low-salience
edges will never reach the top of the rankings, restricting the
edge choice of the walkers and severely limiting the breadth
of explanations produced.

The permutation as originally described in Fogaras and Rácz
ranks nodes randomly; however, the salience of a node is not
a well-defined concept, and so to enable a salience-weighted
permutation algorithm it was necessary to switch to ranking
facts. This modification was justified for the following reason.
Under Fogaras and Rácz’s formulation, convergence required
only that two walkers meet at the same point, and so to
encourage convergence it was enough to encourage walkers to
choose the same nodes to step to — hence nodes were what
was ranked. However, under our formulation, convergence
requires that the two walkers also follow the same edge label
in the same direction. An edge label plus one endpoint makes
up a fact, so to encourage convergence, we are justified in
encouraging walkers to choose the same facts to walk along.

The weighted-permutation algorithm we developed works
according to the common permutation strategy of assigning
a random number to each element to be permuted and then
sorting by those numbers. We devised a method to incorporate
salience into the generation of those random numbers.

We made two attempts at designing the weighting algorithm.
Our first, unsuccessful attempt at a biased algorithm contained
an oversight which we corrected in the second version. The
first, naive approach worked as follows:

1) Each fact fi is associated with a nonnegative weight wi

2) Each fact fi is assigned a random number ri between 0
and wi

3) Elements are ranked in ascending order according to ri

Using this algorithm, elements with a low weight are more
likely to get a low number relative to other elements, and are
therefore more likely to be ranked first.2 To use this algorithm
to favor salient facts, the weight function used to assign the
wi values could be set to wi = 1 − salience(fi), or some
other function such as wi = 1−

√
salience(fi).

When testing this algorithm using wi = 1−salience(fi), a
failure mode arose: namely, the very same facts would appear
at the top time and time again. We determined that the problem
occurred with unique facts because their salience is precisely
1, and their weight was therefore 0. When unique facts were
assigned a random number between 0 and their weight they
were always assigned 0. This meant that all the unique facts
were always first in the list, and so only unique facts were
ever generated.

To remedy this problem, we added a parameter to increase
the randomness. The modified, successful algorithm works as
follows:

1) Each fact fi is associated with a nonnegative weight wi

2) Given a parameter b, each fact is assigned a random
number ri between 0 and b+ (1− b) ∗ wi

3) Elements are ranked in ascending order according to ri

In this way, the parameter b can be tuned to increase or
decrease the randomness of the permutation.

The properties of the weight function do not constrain the
calculation, so most any weight function could be used. To
favor low-salience facts, for example, salience or the square
root of salience can be used directly. To favor medium-salience
facts, wi = salience(fi) ∗ (1− salience(fi)) could be used.
Any number of other functions are possible depending on the
desired salience characteristics of the resulting explanation.

C. Relevance of Salience-Weighting

As for whether salient facts are actually more useful, it
seems to depend on the intended use case. In some cases, ob-
vious paths are more useful, and in other cases, obscure paths
are more useful. If the user knows very little about the area of
inquiry he or she is likely to prefer explanations that refer to
common and well-understood facts and properties. Conversely,
if the user is an expert in the domain, he or she is likely to

2“Weight” might be a misnomer here as it implies elements with high
weights are favored, but the opposite is the case with this algorithm.



prefer more obscure data. A user with average expertise will
probably want only middle-salience explanations.

For example, consider a movie-watcher who has never seen
any Star Wars movies. He or she may be interested to know
about low-salience (i.e. common) facts like these:

{ofGenre, Science Fiction}
{hasMusicContributor, John Williams}
{hasActor, James Earl Jones}

These facts reference well-known people and broad genres,
which could help give a novice a grasp of what relates the
Star Wars movies to one another. High-salience facts such as
the following:

{hasProducer, Gary Kurtz}
{hasDirector, Irvin Kershner}
{hasEditor, T. M. Christopher}

would be too obscure; an unfamiliar viewer is unlikely to
know who, say, Irvin Kershner is, as he is not well-known
for directing any other blockbusters. However, a Star Wars
afficionado who already knows that the Star Wars movies
are Science Fiction films will find the low-salience facts too
obvious. He or she may be interested in knowing about the
more unusual details that relate Star Wars Episode IV: A New
Hope and Star Wars Episode V: The Empire Strikes Back
to one another, and would be pleased to discover that the
relatively-unknown editor T. M. Christopher was involved in
the production.

Fortunately, our method enables the salience to be weighted
by a custom weight function, so that the user can tune the
salience of the resulting explanations to his or her needs.
Additionally, because explanations are generated on-demand,
the desired obscurity could be specified at query time, which
would enable the user to ask for more or less obscure expla-
nations in real time as they explore their data.

VII. APPLICATIONS

Our work on semantic similarity has been developed with an
eye towards a variety of applications, primarily in the military
and intelligence domains. In general terms, similarity measures
and explanations are very useful tools for analysis of large
graph-based datasets.

Consider a simple example. Suppose we are collating in-
formation on Libya and we encounter the profiles for the
following individuals:

• Muammar al-Gaddafi
• Muammar El-Gadhafi
• Moammar Kadaffi
Despite considerable variation in their spellings, these

names all refer to the same Libyan former head of state. In fact,
some sources report over one hundred ways to spell this per-
son’s name [14] due to ambiguities in the transliteration from
Arabic. It would be ideal if we can use additional information
to disambiguate the names in order to ascertain that these
profiles represent the same person. Using information about
the relationships (and actions) of the person from each profile,

we could derive similarity scores for each pair of profiles, and
merge those profiles as appropriate.

In another setting, suppose we are monitoring the network
activities of a group of employees of company X. Each em-
ployee belongs to one of four departments: Engineering, Sales,
Finance, or Corporate. We can monitor email traffic, access
to corporate applications, printers, file repositories and other
network activities. Let’s focus on George, who is in Sales.
We receive alerts that George has been accessing financial
software and financial projection data files. Is this activity
unusual? Our algorithm could be applied to compare George
and the profile of his activities with those of employees at his
and other departments. Does George seem to be behaving more
like employees in Finance than he was before, or less similarly
to his fellow employees at Sales than we might expect? If so,
it certainly indicates that George’s behavior has changed for
some reason, and may warrant investigation.

In essence, our similarity work can be applied to any data
expressing relationships between entities. Our algorithm is
highly scalable, so it can be applied on very large datasets,
and our work on explanations allows the similarity results to
be clearly communicated to end users of the data analysis. For
these reasons, we believe our work to be highly applicable to
a wide variety of military and intelligence tasks.

VIII. FUTURE WORK

The future of this work lies in two directions. The first is
to perform experiments to assess the improvement of using
SSDM as compared to SimRank and other approaches. We
would also like to perform user tests to determine the perceived
utility of different explanations in a real-world environment.
The second direction lies in further research on extensions to
the work and on new approaches to enhance it.

Experimentation with SSDM will likely take place in a
relevant application domain such as social network analysis (in
the intelligence domain) or computer network activity analysis
(the cyber domain). Metrics for the meaning of similarity will
have to be developed for each domain before the algorithm
can be evaluated. This is especially true with user testing,
where the experiments need to account for subjectivity and
prior domain knowledge. Selecting and vetting the appropriate
data sets for automated evaluation is another challenge —
graph-based data, which is manually annotated for similarity,
does not appear to be very common. One approach we may
take is to compare structural similarity generated by SSDM to
similarity derived from entity attribute comparison (presence
and value of certain attributes). Many well-established algo-
rithms exist in this area to provide a baseline for attribute-
based similarity.

The most promising direction of further research we en-
vision lies in the domain of calculating predicate similarity.
With our current algorithm, walkers must traverse identical
predicates — a strategy designed to prevent relations such as A
is C and B isNever C from contributing positively to A’s
similarity with B. However, it intuitively seems that A is C
and B isOften C should certainly contribute to A and B’s



similarity. Doing so would require calculating the similarity
between predicates (in this case, is and isOften) before
calculating the similarities between entities. One possible
way to do this would be to run SSDM on the ontology to
calculate predicate similarity before moving on to calculate
object similarity. Another possible option would be to use a
language-based metric as a source of predicate similarity, such
as by using WordNet [15] similarity.

A third option considers the insight that “similar predicates
are those that connect similar entities to other similar entities,”
for example, the predicates teaches and hasInstructor
are considered similar because they appear in relationships
such as Dr. Smith teaches Chemistry and CH1301
hasInstructor Dr. Jones where Chemistry is
known to be similar to CH1301 and Dr. Smith is similar
to Dr. Jones. This formulation of predicate similarity is
obviously recursive with respect to entity similarity: in order
to calculate predicate similarity, we must first calculate entity
similarity, and vice versa. However, SimRank, SSDM, and
many other algorithms are also based on recursive definitions
and derive iterative approximations to the optimal result set.
Logically then, we could apply this recursive definition of
predicate similarity in order to simultaneously derive both
entity (subject and object) and predicate similarity. This is
reminiscent of similar iterative and approximate approaches
in robotic navigation to solve simultaneous localization and
mapping (SLAM) [16][17] problems. It is reasonable to expect
that predicate similarity may be derived analogously.

Additional directions also include determining what other
weighting schemes besides salience-weighting might be use-
ful. For example, if a dataset includes metadata about prove-
nance or other information about the trustworthiness of each
fact (node in the graph), then the SSDM calculation could
be weighted to favor more trusted facts over facts from less
reliable sources. Other possibilities surely exist.

And finally, while the current explanation format is cer-
tainly human-understandable, it does not yet read as easily
as text. Fortunately, the data in question is already in subject-
predicate-object form; that is to say, it is already in a sentence-
like structure, and therefore natural language report generation
is a goal well within reach. The additional work required
would include determining what sentence structures each
predicate fit with, and determining how to ensure that the
subjects and objects were tagged with human-readable labels
that could be included in a generated report (and not just URIs
or other machine-readable descriptors).

IX. CONCLUSION

Questions of similarity crop up any time users want to make
sense of data describing relationships between entities, and
data of this form (i.e. graph data or linked data) is ubiquitous.
The contributions we describe in this paper help users find sim-
ilarities in graph data efficiently using SSDM, and understand
those similarities using similarity explanations. We defined
what an explanation of a similarity score should convey;
we implemented a system that can produce such scores and

explanations efficiently; and we enabled the obscurity of our
explanations to be tuned to meet user’s needs. We believe
that these contributions will help users in the intelligence and
defense communities to make sense of their data, by enabling
them to not only find relevant similarities more efficiently, but
also to understand those similarities on an intuitive level.
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