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Abstract. The main goal of this paper is to give a rigorous mathematical 
description of systems for processing quantum information. To do it authors 
consider abstract state machines as models of classical computational systems. 
This class of machines is refined by introducing constrains on a state structure, 
namely, it is assumed that state of computational process has two components: 
a control unit state and a memory state. Then authors modify the class of 
models by substituting the deterministic evolutionary mechanism for a 
stochastic evolutionary mechanism. This approach can be generalized to the 
quantum case: one can replace transformations of a classical memory with 
quantum operations on a quantum memory. Hence the authors come to the need 
to construct a mathematical model of an operation on the quantum memory. It 
leads them to the notion of an abstract quantum automaton. Further the authors 
demonstrate that a quantum teleportation process is described as evolutionary 
process for some abstract quantum automaton. 
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1   Introduction 

The idea to build a device capable "to compute all that can be computed" had 
emerged a long time. One can remember Blaise Pascal's Arithmetic Machine, 
Gottfried Wilhelm Leibniz's Stepped Reckoner, Charles Babbage's Difference Engine 
and his Analytical Engine [17]. But only in the thirties of last century, Alonzo Church 
[3], Alan Mathison Turing [15], and Emil Leon Post [14] built mathematical models 
of the computational processes. Although these models have different shapes each of 
them describes inherently the same class of processes. The equivalence of the Turing's 
model and the Church's model, for example, was proved by A.M. Turing in 1937 
[16]. In the late forties, hardware implementations of a universal computational 
system were developed and began to be used. They are known now as computers. 
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The practice of using computers to solve real problems showed that besides 
answering the question "Can the problem be solved using computer?", an answer to 
the question "Do we have enough computational resources to solve the problem?" is 
important too. Searches for methods to evaluate computational resources for 
computer-assisted problem solving led to the special scientific area which is called 
theory of computational complexity (the brief historical overview one can see in [6]). 
Unfortunately, most important computational problems are complex ones. In 
compliance with the generally accepted propositions of theoretical computing science 
the application field of classical computers, i.e. hardware implementations of the 
universal Turing machine concept, is physically challenged by problems which have 
polynomial computational complexity. 

However, modern science, technique, and technology are in need of methods to 
solve problems whose complexity is higher than polynomial. This situation stimulates 
research of non-classical approaches to computing, and quantum computing is one of 
these. 

The idea to use quantum systems as computing devices appeared in the early 
eighties of the twentieth century. The idea's authors considered it as a way to 
overcome computational complexity. In the context Yuri Ivanovitch Manin's 
monograph1 [11] and Richard Phillips Feynman's paper [4] should be noted. 
Considering the possibility of using quantum machines for solving complex problems 
of simulation Yu.I. Manin wrote (cited by [12]): " we need a mathematical theory of 
quantum automata. Such a theory would provide us with mathematical models of 
deterministic processes with quite unusual properties. One reason for this is that the 
quantum state space has far greater capacity then the classical one: for a classical 
system with N  states, its quantum version allowing superposition (entanglement) 

accommodates Ne  states". In [12], Yu.I. Manin also sets requirements to the 
mathematical theory of quantum automata: "The first difficulty we must overcome is 
the choice of the correct balance between the mathematical and the physical 
principles. The quantum automaton has to be an abstract one: its mathematical model 
must appeal only to the general principles of quantum physics, without prescribing a 
physical implementation. Then the model of evolution is the unitary rotation in a 
finite dimensional Hilbert space, and the decomposition of the system into its virtual 
parts corresponds to the tensor product decomposition of the state space ("quantum 
entanglement"). Somewhere in this picture we must accommodate interaction, which 
is described by density matrices and probabilities". 

R.P. Feynman had a similar opinion [4, 5]. 
This paper is an attempt to construct a mathematical model of quantum automata 

that fulfils requirements formulated by Yu.I. Manin.  

2   Classical Computational Model 

In this section a mathematical model of a classical computational system is 
considered. The approach was proposed by A.N. Kolmogorov and V.A. Uspensky 

                                                           
1 The monograph's introduction was translated into English [12]  
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[10]. Theory of abstract state machine (ASM) is the further development of the 
approach [7, 8].  

2.1   Preliminary definitions 

Definition 1. Let A  denotes an algorithm. It is determined by 

─ a set ( )C A  of states;  

─ a subset ( )I A  of ( )C A  which elements are called  initial states;  

─ a subset ( )T A  of ( )C A  which elements are called  terminal states;  

─ a map : ( ) ( )C CA A A  which defines one step of the computational process;  

─  and the next condition 

( ) ( ) = .I TA A  (1) 

Note that elements of the set ( )C A  correspond to complete state descriptions of 

the computational process which is defined by the algorithm A .  
Definition 2. Let A  be an algorithm then a partial map : ( )  CC N A 2 is called 

a run of the algorithm if it satisfies the following conditions   

─ (0) ( ); IC A   

─ if ( )  C t  for some Nt  then ( )  C t  for all Nt  such that < ;t t   

─ if ( 1)  C t  for some Nt  then ( 1) = ( ( ))C t C tA ;  

─ if ( ) ( )  TC t A  then ( 1) = C t .  

From this definition it follows immediately that the domain of an arbitrary run is 
the set N  or some set 0 .. = { | } NT t t T , where T  is a non-negative integer. 

In the first case the algorithm  diverges on the initial state (0)C  (this is denoted by 

( (0)) CA ). 

In the second case the algorithm converges on the initial state (0)C  to ( )C T (this 

is denoted by ( (0)) ( )C C TA ).  

2.2   Abstract state machines with stochastic behaviour 

Let's refine the Definition 1 and Definition 2 for such algorithms that have sets of 
states with some special structure. 

Let's start refining with the following auxiliary definitions. 

                                                           
2 For two sets A  and B  by :  f A B  a partial map from A  into B  is denoted. For a A  

by ( )  f a  the clause " ( )f a  is defined" is denoted.  



20                      M. Alobaidi, A. Batyiev and G. Zholtkevych 

 

Definition 3. Let N  and A  be finite sets of nodes and arcs respectively, dom  and 
codom  be a maps that associate with arcs their initial and terminal nodes 
respectively, then the tuple ( , , dom,codom)N A  is called a directed multigraph. 

Definition 4. Let = ( , , dom,codom)G N A  be a directed multigraph, then an 

alternating sequence 1 1 1= , , , , k kn a a n   of nodes and arcs, beginning and ending 

with a node, is called a walk if for all = 1, ,s k  the next condition holds: 

dom( ) =s sa n  and 1codom( ) = s sa n . 

In this case we shall use the notation: 1
1 1 

a a k
kn n .   

Definition 5. Let 1
1 1=  

a a k
kn n   be a walk in the directed 

multigraph = ( , , dom,codom)G N A  and n  be its node, then we shall say that   

─ n  is the initial node of   (it is denoted by dom( ) = n ) if 1=n n ;  

─ n  is the terminal node of   (it is denoted by codom( ) = n ) if 1= kn n ;  

─   traverses n  if for some {1, , 1} s k  the equality = sn n  holds.  

Definition 6. Let 0( , , dom,codom, , )N A n F  be a tuple such that the 

tuple ( , , dom,codom)N A  is a directed multigraph, 0n  is a fixed node (it is called the 

initial node), F  is a fixed subset of nodes(its elements are called terminal nodes). The 
tuple is called a control graph if the next conditions hold:   

─ 0 n F ;  

─ for each n F  there is no arc with initial node equals n ;  
─ for each node n  there is a walk such that its initial node equals 0n , its terminal 

node belongs to F , and it traverses n .  

Note that for the control graph 0( , , dom,codom, , )N A n F  and each \ Nn F  the 

set Out( ) = { | dom( ) = } An a a n  is not empty. 

Let's assume that for an arbitrary algorithm A  the set of states has the next 
structure ( ) = ( ) ( )C N SA A A  where ( )N A  is the nodes set of some control graph 

( )G A  and ( )S A  is some set of memory snapshots. 

In this case suppose that the set of initial states is the next set 

0( ) = {( , ) | ( )}I Sn S SA A  and the set of terminal states is the following set 

( ) = {( , ) |  & ( )} T Sn S n F SA A . 

This supposition leads us to the next representation of the map A :  

( , ) = ( ( , ), ( , ))n S n S n S  A A A , where : ( ) ( ) ( ) N S NA A A A  

and : ( ) ( ) ( ) N S SA A A A  
(2) 
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Suppose now that the map A  has property of locality. It means that for each 

( ) \ Nn FA  there exists a map : ( ) Out( )Snh nA  and for each ( ) Aa A 3 there 

exists a map : ( ) ( )S Sag A A  such that the following equalities are true:  

( , ) = codom( ( ));nn S h SA  (3) 

( )( , ) = ( ).h Sn
n S g SA  (4) 

From (2), (3), and (4) it follows  

( )( , ) = (codom( ( )), ( )).n h Sn
n S h S g SA  (5) 

Therefore, we can consider the computational process which is determined by the 
algorithm A  as a sequence of steps. Each step begins when the current state is 
described by some control graph node n  and a memory snapshot S . Then the map 

nh  chooses the arc a  outgoing from the node n  depending on the snapshot S . 

Finally, using the selected arc and the memory snapshot the new control graph node 
and the new memory snapshot are determined in compliance with (5). 

Let's modify the computational model by rejecting the assumption about 
determinacy for the choosing process. Definition 2.5 describes this modification 
formally.  

Definition 7. Let 0= ( , , dom,codom, , )G N A n F  be a control graph, S  be some 

set of memory snapshots, = {Pr(  | , ) | \ , }  P N SS n n F S  be a family of 

probability distributions on A , and = { | }T Aag a  be a family of maps from S  

into itself then the tuple ( , , , )G S P T  is called an abstract state machine with 

stochastic behaviour if the following condition holds  

for all  Nn ,  SS ,  Aa  if Out( )a n  then Pr(  | , ) = 0a S n . (6) 

Dynamics of such machines is determined by the next definition. 
Definition 8. Let ( , , , )G S P T  be an abstract state machine with stochastic 

behaviour, 0= ( , , dom,codom, , )G N A n F  be its control graph then a partial map 

:  N SC N  is called a run of the machine if it satisfies the following conditions 

─ 0(0) = ( , )C n S , where  SS ;  

─ if ( )  C t  for some t N  then ( )  C t  for all t N  such that <t t ; 

─ if ( 1) = ( , )   C t n S  for some t N  and ( ) = ( , )C t n S  then there exists 

Out( )a n such that Pr(  | , ) > 0a n S , = codom( )n a , and = ( ) aS g S ;  

─ if ( ) = ( , )  C t n S  for n F  and  SS  then ( 1) = C t .   

Below such machines will be generalised for the quantum case.  

                                                           
3 By ( )A A  is denoted the set of arcs for the control graph ( )G A . 
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3   Mathematical Model of Finite-Level Quantum Systems 

In the section the model of quantum systems with finite quantity of levels (finite-level 
quantum systems) is described. It is based on the approaches set forth in the 
works [9, 13].  

3.1   Postulates of finite-level quantum systems 

The postulates of finite-level quantum systems fix basic notions which are used to 
construct mathematical models for the systems. 

Postulate 1: an n -dimensional Hilbert space Hn  is associated to any quantum 

physical system with n  levels. This space is known as the state space of the system. 
The system is completely described by its pure state, which is a one-dimensional 
subspace of the state space. This subspace is uniquely represented by the ortho-
projector    on a vector   which generates the subspace. 

In contrast to pure states mixed states are used to describe quantum systems whose 
state is not completely known. 

Rather more detailed suppose we know that a quantum system is in one of a 

number of states  : = 1, ,k k k m    with respective probabilities 

 : = 1, ,kp k m . We shall call  ,  : = 1, ,k k kp k m    an ensemble of pure 

states. The density operator for the system is defined by the equation 

=1

= 
m

k k k
k

p   . 

We identify mixed states with density operators 4. Evidently, that each density 
operator is a non-negative defined operator which trace is equal to unit. It is known 
that the inverse statement is true: a non-negative defined operator, which trace is 
equal to unit, is a density operator [9]. 

Of course, a one-dimensional ortho-projector is a density operator. The set of all 
density operators is convex and its subset of one-dimensional ortho-projectors is the 
subset of its extreme points [9]. This allows to consider pure states as indecomposable 
states. 

Postulate 2: the state space of a composite physical system is the tensor product of 
the state spaces of the component physical systems. Moreover, if we have systems 
indexed by = 1, ,k m , and the state of the system with number k  is described by 

the density operator k , then the joint state of the total system before any interactions 

is 1   m  . 

Postulate 3: the evolution of a closed quantum system is described by a unitary 
transformation. That is, the state    of the system at time 1t  is related to the 

                                                           
4 The set of all density operators on the space Hn  is denoted by nS  
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state     of the system at time 2t  by a unitary operator U  which depends only 

on the times 1t  and 2t , =   U U    . 

If we have an ensemble of pure states of the system which is described by the 
density operator   at time 1t  then the density operator   of the system at time 2t  

can be calculated by the formula =  U U  . 

Postulate 4: quantum measurements are described by an indexed finite family 

 = ( ) : K K x x X  of Kraus' operators, where X  is a finite set. These are operators 

acting on the state space of the system being measured. The index x  refers to the 
measurement outcome that may occur in the experiment. If the state of the quantum 
system is described by the density operator   immediately before the measurement 

then the probability that result x  occurs is given by the following formula 5 

   Pr  | = Tr ( ) ( )x K x K x   (7) 

and the state of the system immediately after the measurement is described by the 
density operator 

   
( ) ( )

Eff  | =
Tr ( ) ( )




K x K x

x
K x K x




 (8) 

Any Kraus' family  = ( ) : K K x x X  satisfies the completeness condition  

( ) ( ) =




x X

K x K x 1  (9) 

which ensures correctness of the definitions given by formulas (7) and (8).  

3.2   Measurements and isometric operators. Quantum operations 

Postulate 3 and Postulate 4 describe two different ways of changing a system state. It 
looks non-naturally. Hence, we can set the problem: find a unified description for 
evolutions and measurements of a finite-level quantum system. 

To solve the problem let's introduce for a state space Hn  of an n -level quantum 

system and a finite set X  operators  2( ) :  H Hn nJ x l X  by the formula  

( ) = J x x   (10) 

where  2x l X  such that  ( ) = , x x . 

                                                           
5 By Tr( )  the usual operator trace is denoted  
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Properties of operators from the family  ( ) : J x x X  are established by the next 

proposition, which is proved by the direct calculation. 
Proposition 1. Let Hn  be a state space of an n -level quantum system and X  be 

a finite set, then the operators family  ( ) : J x x X  defined by formula (10) satisfies 

the next identities  

 ( ) ( ) = ( )


 

x X

J x x x x   (11) 

( ) ( ) = ( , )    J x J x x x 1  (12) 

( ) ( ) =   J x J x x x1  (13) 

Now using a Kraus' family = { ( ) : }K K x x X  for some measurement let's define 

an operator 2: ( ) K H Hn nW l X  by the formula  

= ( )


 K
x X

W K x x   (14) 

Proposition 2. Let  = ( ) : K K x x X  be a Kraus' family, and KW  be the 

operator that is built by the formula (14), then KW  is an isometric operator and the 

next identities hold for all x X :  

( ) = ( ) KK x J x W  (15) 

Proof. Let | 0 , , | 1  n  be some orthonormal basis in Hn , then for any 

= 0, , 1k n  from (14) we have  

= ( )


 K
x X

W k K x k x   

Hence,  

 
1

0

= ( )


 
  K

n

k x X

W K x k x k   

and  

 
1

0

= ( )


 

 
  K

n

k x X

W k k K x x   

Therefore,  
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   
1 1

0 0

= ( ) ( ) =
 

 

  

   
           

   
  K K

n n

l k x X

W W l l K x x K x k x k  

1 1

, 0 , 0

( ) ( ) = ( ) ( )
 

 

     
         

n n

k l x x X k x X

l l K x K x k x x k K x K x k k  

( ) ( )


 

x X

K x K x . 

 

Using the completeness condition one can obtain that =
K KW W 1 . 

The last equation ensures that KW  is an isometric operator. 

Equation (15) is proved by the direct calculation:  

 ( ) = ( ) ( ) = ( ) 


 K

x X

J x W J x K x x K x   .  

Proof is complete. 
Using Proposition 2 one can rewrite formulae (7) and (8) in the following way:  

    Pr  | = Tr  K Kx W W x x  1 . (16) 

 
  

( ) ( )
Eff  | =

Tr

 

 
K K

K K

J x W W J x
x

W x x W


 1

. 
(17) 

Now we claim that this construction can be inverted. 
Really, let Hn  be a state space for an n -level quantum system, X  be a finite set 

of outcomes, and  2:  H Hn nW l X  be an isometric operator. 

Let's define a family  = ( ) : K K x x X  of operators on the space Hn  by the 

formula  

( ) = ( )K x J x W . (18) 

Proposition 3. Let Hn  be a state space for an n -level quantum system, X  be a 

finite set of outcomes,  2:  H Hn nW l X  be an isometric operator, and 

 = ( ) : K K x x X  be the family of operators which is defined by formula (16); then   

1. K  satisfies the completeness condition and, therefore, it is a Kraus' family;  
2. =KW W .  

Proof. To prove the completeness condition let's calculate the left side of (9) using 
(13) and the isometry property  

( ) ( ) = ( ) ( ) = ( | |) = =    

  
   

x X x X x X

K x K x W J x J x W W x x W W W1 1 .  
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To prove the second statement let's calculate using (13)  

 | = ( ) = ( ) ( ) =
 

  K
x X x X

W K x x J x K x    

     ( ) ( ) = ( ) ( ) = = 

  
  

x X x X x X

J x J x W J x J x W x x W W   1 . 
 

Proof is complete. 
Proposition 2 and 3, formulae (16) and (17) substantiate replacing the Kraus' 

families by the corresponding isometric operators under studying the interaction of 
quantum systems with classical systems. This replacing leads us to unification of 
Postulate 3 and Postulate 4. To stress such unification we will say that an isomeric 
operator describes the quantum operation by formulae (16) and (17). 

Definition 9. Let Hn  be a state space of an n -level quantum system, X  be a 

finite set of outcomes, then isometric operators  2
1 2, :  H Hn nW W l X  are 

called equivalent if for all x X  and for any density operator   the following 

equalities are true  

     1 1 2 2Tr = Tr  W x x W W x x W 1 1 , (19) 

1 1 2 2( ) ( ) = ( ) ( )   J x W W J x J x W W J x  . (20) 

Classes of this equivalence will be called quantum operations with a set of 
outcomes X .  

Easy to see that isometric operators  2
1 2, :  H Hn nW W l X  describe the same 

quantum operation if ( )
2 1( ) = e ( ) i xJ x W J x W  for any : [0, 2 )X  . 

We claim that the inverse statement is true too.   
Theorem 1. Let Hn  be a state space of an n -level quantum system, X  be a finite 

set of outcomes,  2
1 2, :  H Hn nW W l X  be equivalent isometric operators then 

( )
2 1( ) = e ( ) i xJ x W J x W  for some : [0, 2 )X  .   

Proof. It is evident, that each isometric operator  2:  H Hs n nW l X , where 

= 1, 2s , can be represented by the formula  

 
1

( )

0

= ( )


 
 

n
s

s k
x X k

W x x k , (21) 

where {| 0 , , | 1 }  n  is an orthonormal basis in Hn  and ( ) ( ) = ( ) | s
sk x J x W k  

for = 0, , 1k n  and x X . 

Using representation (21) we calculate  Pr |x k k  for sW  where = 1, 2s .  
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    Pr | Tr = | ( | |) ) | =      s s s sx k k k k W x x W k W x x W k1 1  

     
1

( ) ( )

0

( ) = ( ) =


 

 
    

n
s s

s sl k
x X l

k W x x x x l k k W x x 1  

   
1 2( ) ( ) ( )

0

( ) ( ) = ( )


 
   

n
s s s

l k k
x X l

k l x x x x x   . 

Using this and identity (19) one can derive that for all = 0, , 1k n  and x X  
the next equality holds  

2 2(1) (2)( ) = ( )k kx x   (22) 

Let  ( )( ) = | 0 < , ( ) 0 s
s kI x k k n x  for each x X  and = 0,1s . From (22) it 

follows that 1 2( ) = ( )I x I x , hence, we can denote this set by ( )I x . 

From (20) one can derive that for all x X  and ( )k I x   

(2) (2) (1) (1)( ) ( ) = ( ) ( )k k k kx x x x    . (23) 

The next equality is obtained by multiplying equality (23) from left by (1) ( )k x  

and from right by (1) ( )k x  and using equality (22):  

2 2 2(2) (1) (2) (1)( ) ( ) = ( ) ( )k k k kx x x x    . (24) 

From the (24) and (22) it follows that for all x X  and ( )k I x   

(2) (1)( , )( ) = e ( )i k x
k kx x  , where 0 ( , ) < 2 k x  . (25) 

Further, from (20) it follows that for all x X  and , ( )k l I x  the next equality is 

true:  

(2) (2) (1) (1)( ) ( ) = ( ) ( )k l k lx x x x    .  

Therefore,  

(1) (1) (1) (1)( ( , ) ( , ))e ( ) ( ) = ( ) ( )i k x l x
k l k lx x x x        

and ( ( , ) ( , ))e = 1i k x l x  . 
In summary, we obtain the next equality for all x X  and ( )k I x   

(2) (1)( )( ) = e ( )i x
k kx x  . (26) 
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Using (24) for x X , ( )k I x  and the equality (2) (1)( ) = ( ) = 0l lx x   for 

{0, , 1} \ ( ) l n I x  one can get that equality (26) is true for all 0 < k n . 

Therefore, ( )
2 1( ) = e ( ) i xJ x W J x W  for some : [0, 2 )X  . 

Corollary 1. Two isometric operators 2
1 2, : ( ) H Hn nW W l X  define the same 

quantum operation if and only if for some : [0, 2 )X   the following equality 

holds 2 1= W W , where ( )= e


   i x

x X

x x1 . 

4   Abstract Quantum Automata 

Now we describe some class of mathematical models for quantum information 
processes. This class we call the class of abstract quantum automata.  

4.1   The notion of an abstract quantum automaton 

Definition 10. Let ( > 1)Hm m  be a state space of an m -level quantum system, and 

let 0= ( , , dom,codom, , )G N A n F  be a control graph. Suppose that each non-terminal 

node n  of the graph G  is connected with a quantum operation for which Hm  is the 

state space, Out( )n  is the outcomes set, and  2: Out( ) H Hn m mW l n  is an 

isometric operator describing the operation. Then the tuple  

( , ,{ | \ })H G Nm nW n F   

is called an abstract quantum automaton.  
The next definition describes the set of runs for an abstract quantum automaton 

similarly to Definition 8. 
Definition 11. Let ( , ,{ | \ })H G Nm nW n F  be an abstract quantum automaton 

where the control graph G  is equal to 0( , , dom,codom, , )N A n F . Then a partial map 

:  N mC N S  is called a run of the automaton if it satisfies the following 

conditions   

─ 0(0) = ( , )C n  , where  m S ;  

─ if ( )  C t  for some t N  then ( )  C t  for all t N  such that <t t ;  

─ if ( 1) = ( , )   C t n   for some t N  and ( ) = ( , )C t n   then there exists 

Out( )a n  such that 

    Pr  | , = Tr > 0 n na n W a a W  1 , = codom( )n a ,  
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and    
( ) ( )

= Eff  | , =
Pr  | ,

 
 n nJ a W W J a

n a
a n

 


; 

─ if ( ) = ( , )  C t n   for n F  and  m S  then ( 1) = C t .  

Now we can consider two important examples. 
Let's consider a quantum information process which sets a qubit (2-level quantum 

system) into the state 0 0 . 

Evidently, that this problem can not be solved by any unitary transformation. 
We shall specify an abstract quantum automaton that does it. The control graph of 

the automaton is shown in Fig. 1.  

Fig. 1. Qubit cleaner. 

As one can see Out( ) = {0,1}m . Let's define   2
2 2: 0,1 H HmW l  by the 

formula  

= 0 0 0 1 1 1  mW    .  

Further, Out( )f  is a singleton hence 2 2: H HfW . Let's define  

= 0 1 1 0fW    .  

Easy to see that for an arbitrary initial state of a qubit its state after handling by the 
automaton is equal to 0 0 . 

Therefore, we have built the abstract quantum automaton that specifies the process 
of cleaning a qubit. 

The next example deals with preparing an entangled pair of qubits. We shall 
specify an abstract quantum automaton that does it. 

The control graph of the automaton is shown in Fig. 2. 
Let's define 2 2 2 2:   H H H HhW  by the formulae  

   1
0 = 0 1

2
  hW   ,  



30                      M. Alobaidi, A. Batyiev and G. Zholtkevych 

 

   1
1 = 0 1

2
  hW   , 

and define 2 2 2 2:   H H H HcW  by the formulae  

 0 = 0 cW   , 

 1 = 1 0 | 1 0 1 | 1   cW    . 
 

 

 

Fig. 2. Preparing an entangled pair of qubits. 

Easy to see that for an arbitrary initial state of a qubit pair its state after handling 
by the automaton is equal to  

   1
0 0 1 1 0 0 1 1

2
      .  

These examples demonstrate that modelling of quantum information processes by 
abstract quantum automata allows to describe processes of initial preparation of a 
quantum memory for quantum computing devices.  

4.2   Quantum teleportation as an abstract quantum automaton 

To complete the paper let's consider the quantum teleportation process and let's show 
that it can be described by an abstract quantum automaton. 

Quantum teleportation is a process by which a qubit state can be transmitted 
exactly from one location to another, without the qubit being transmitted through the 
intervening space. This phenomenon has been confirmed experimentally [1, 2]. 

The control graph of the automaton is shown in Fig. 3.  
Let's define 2 2 2 2 2 2:     H H H H H HcW , where the first qubit is 

Alice's qubit, the second and the third qubits are the first and the second qubits of the 
entangled pair respectively, by the formulae  

 0 = 0   cW k k  , where 0,1k , 

 1 0 = 1 1   cW   , 
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 1 1 = 1 0   cW   . 

Further, Out( ) = {00,01,10,11}m  and the corresponding isometric operator is 

defined by formulae  

 0 0 = 0 0 00    mW   , 

 0 1 = 0 1 01    mW   , 

 1 0 = 1 0 10    mW   , 

 1 1 = 1 1 11    mW   . 

 

 

 

Fig. 3. Teleportation 

By direct calculation one can prove that the initial state     for an 

arbitrary 4 S  is transformed by the automaton into the state 

 1
0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1

4
          .  

Conclusion 

Summarising the above we can conclude:   

─ our attempt to solve the Yu. Manin's problem led us towards the notion of an 
abstract quantum automaton;  

─ this notion is based on a computational model known as a machine of A. 
Kolmogorov and V. Uspensky;  
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─ abstract quantum automata can be used for formal specification of quantum 
information processes including non-invertible processes like qubit cleaning, 
entangled pair preparing and quantum teleportation.  

The authors know that quantum algorithms can be specified by using abstract 
quantum automata but corresponding results are not given in the paper because they 
are cumbersome.  
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