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Abstract. We investigate algorithms for solving the satisiliay problem in
composition-nominative logics of quantifier-equatb level. These logics are
algebra-based logics of partial predicates conduin a semantic-syntactic
style on the methodological basis, which is commath programming; they
can be considered as generalizations of traditiagits on classes of partial
predicates that do not have fixed arity. We shoswréduction of the problem in
hand to the satisfiability problem for classicakfiorder predicate logic with
equality. The proposed reduction requires extensfdagic language and logic
models with an infinite number of unessential Valga. The method developed
in the paper enables us to use existent satisfiabiiecking procedures also for
quantifier composition-nominative logic with equgli
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1 Introduction

Last years the interest to the satisfiability pesbl[1] has risen due to practical value it
has obtained in such areas as program verificagigmthesis, analysis, testing, etc. [2—
5]. In this paper we address the satisfiabilitylpheen in the context of theomposition-
nominativeapproach[6], which aims to construct a hierarchy of logafsvarious ab-
straction and generality levels on the methodoklgimasis, which is common with
programming. The main principles of the approaehpminciples oflevelopment from
abstract to concretgoriority of semanticscompositionality andnominativity

These principles specify a hierarchy of new logltat are semantically based on
algebras of predicates. Predicates are considergdrial mappings from a certain
class of dat® into the class of Boolean valuBsol. Operations over predicates are
calledcompositionsThey are treated as predicate construction t@d$a classeare
considered on various abstraction levels, but therattention is paid to the class of



Satisfiability Problem in Composition-Nominative gios ... 57

nominative data Such data consist of painame—valueNominative data can repre-
sent various data structures such as records satistg, relations, etc. [6, 7]; this fact
explains the importance of the notion of nominatia¢a. In the simplest case nomi-
native data can be considered as partial mappnogs & certain set of names (vari-
ables)V into a set of basic (atomic) valu@s These data are calledminative sets

their class is denoteA. Nominative sets represent program states for Isimo-

gramming languages (see, for example, [6, 8]).i®datedicates and functions over

VA are calledquasiary their classes are denoted’="A O Bool and Fn"=

VA O A respectively. Partial mappings of typ&A O VA are calledbi-
quasiary Such mappings represent program semantics fgrlsiprogramming lan-
guages; therefore their class is dendtegl”. From this follows that semantic models
of programs and logics are mathematically basedhennotion of nominative set
(nominative data in general case). This fact pernatintegrate models of programs
and logics and represent them as hierarchy of ceitipe-nominative models [9, 10].
Logics developed within such approach are calfechposition-nominative logics
(CNL) because their predicates and functions afmeld on classes of nominative
data, and logical connectives and quantifiers arenélized as predicate composi-
tions.

CNL can be considered as generalization of clalsgrealicate logic but for all that
many methods developed within classical logic dan he applied to CNL. Here we
confirm this statement for the satisfiability pretsl in CNL. In this paper we consider
composition-nominative logic of quantifier-equatidrievel and construct an algo-
rithm that reduces the satisfiability problem iistlogic to the same problem in clas-
sical first-order predicate logic with equality. & meduction proposed requires the
logic language to be extended with an infinite nemiif unessential variables.

The paper is structured in the following way. lictsEn 2 we give an overview of
the composition-nominative logics classificatiohgn in section 3 we give formal
definitions of the logics that we consider in tipigper, and define the satisfiability
problem. In section 4 we describe the reductionhoektfor solving the satisfiability
problem. In section 5 we discuss related work.dctisn 6 we summarize our results
and formulate directions for future investigations.

Proofs are omitted here and will be provided ireatended version of the paper.

Notions and notations not defined in the papeuaderstood in the sense of [10].

2 Classification of Composition-Nominative L ogics

Classification ofcomposition-nominative logics based on classification of their
parameters: data, predicates, and compositionsniie semantic notion of mathe-
matical logic — the notion of predicate — can béngel as a partial function from a
data clas® to Bool. For the most abstract level of data consideratioch composi-

tions as disjunctior], negation-, etc., can be defined. These compositions are de-
rived from Kleene’s strong connectives [11] wherntipéity of predicates is taken into
consideration. Thus, the main semantic objectdoigics of this level are algebras of

partial predicates of the typeD<D@» Bool, [0, ->. The obtained logics may be
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calledpropositional logics of partial predicateSuch logics are rather abstract, there-
fore their further development is required at tleenmative level. At this level we
have two sublevels determined respectively byaftat hierarchic nominative data.
Three kinds of logics can be constructed from progmodels on the flat nomina-
tive data level:
1. pure quasiary predicate logics based on algebrésone sortPr;
2. qusjiary predicate-function logics based on algelwith two sortsPr ¥ and
Fn*7,
3. qua\;sjary program logics based on algebras withetlsarts:Pr, Fn'*, and
Prg™”.
For logics of pure quasiary predicates we identémominative, quantifier, and
quantifier-equational levels.
Renominativdogics [10] are most abstract among the above-iomed logics. The
main composition for these logics is the compositad renomination (renaming),

Y/

which is a total mappin@‘g """ ;:Prv““ m PrY-. Intuitively, given a quasiary

Y

predicateP and a nominative set, the value ofR‘)’(l1 """ ); (P)(d) is evaluated in the

following way: first, a new nominative sdt is constructed frond by changing the
values of the names,... v, in d to the values of the names,..., X, respectively; then
predicateP is applied tad'. The obtained value ¢ (if it was evaluated) will be the

Rg for renomination compositionThe basic composition operations of renominative

logics are(, -, andRY .

At the quantifier level, all basic (object) values can be used tustact different
nominative sets to which quasiary predicates caappdied. This allows one to intro-
duce the compositions of quantificatibkin style of Kleene’s strong quantifierEhe

basic compositions of logics of the quantifier leae [, -, R}, and[k.

At the quantifier-equationalevel, new possibilities arise for equating anffledéen-
tiating values using special 0-ary compositions,, iparametric equality predicates
=,y. Basic compositions of logics of the quantifiesational level aré], -, Ry, [X,
and 5,.

All specified logics (renominative, quantifier, agdantifier-equational) are based
on algebras which have only one sort: a class a$iquy predicates.

For quasiary predicate-function logiege identify function level and function-
equational levels.

At the functionlevel, we have extended capabilities of formatibmew arguments
for functions and predicates. In this case it isgilde to introduce the superposition
composition S* (see [6, 10]), which formalizes substitution ohdtions into predi-
cate. It also seems natural to introduce specety0compositions, called denaming
functions'x. Given a nominative sefx yields a value of the namein this set.Intro-
duction of such functions allows one to model reim@tion compositions with the
help of superposition. The basic compositions gfds of the function level aré], -,

SX, [k, and'x.
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At the function-equational level a special equatiymposition = can be introduced
additionally [10]. The basic compositions of logiesthe function-equational level

are [, =, S*, X, 'x, and = At this level different classes of first-ordegios can be
presented.

This means that two-sorted algebras (with setgedipates and functions as sorts
and above-mentioned compositions as operations) éosemantic base for first-order
CNL.

The level ofprogram logicsis quite rich. First, program compositions shohéd
defined that describe the structure of programg¢hémsimplest case these are:

1. assignment compositiohS: Fn'~ M Prg"*,

2. composition of sequential executienPrg*~!xPrg"* m Prg’,
3. conditional compositioiF: Pr“xPrg““xPrg" .  Prg"*,
4

. cycling compositionWH; Pr¥xPrg”* k.  Prg““.

Then we should define compositions specifying paagiproperties. Here we only
mention a composition which formalizes the notiémassertion irFloyd-Hoare logic
From a semantic point of view an assertion schefiibeoform {P}prog{ Q} may be
considered as compositidiH, which given two quasiary predicatégprecondition),
Q (postcondition), and a bi-quasiary function (agsean) prog produces new quasi-
ary predicate denoted WyH(P, prog, Q). At this level we obtained a three-sorted
predicate-function-program algebra. Classes of geofrthis algebra may be consid-
ered as sets of formulas (or their componentspoesponding logics.

Having described classification of composition-noative logics we can formulate
a task of investigation of logics presented in ttlsssification. For many of such
logics axiomatic calculi were constructed and tlpeoperties were investigated [10,
12].

In this paper we will consider the satisfiabilityoplem for logics of quantifier-
equational level. This problem for logics of theeywious levels (propositional,
renominative, and quantifier) was considered ir].[Y8e choose a reduction method
that reduces the satisfiability problem of comgositnominative logic to the satisfi-
ability in classical logic. To simplify this redich we will use an intermediate logic
with unessential variables. Thus, we will defineethlogics of quantifier-equational
level: composition-nominative logic, logic with wssential variables, and classical
first-order logic.

3 Formal Definitions of L ogics of Quantifier-Equational Level

At first, we describe a general mechanism of spemfcomposition-nominative logics

and then provide definitions for the logics congidein this paper. To do this we

should specify three logic components that reftbet semantic-syntactic scheme of

logic definition:

- semantic componena class of algebras of quasiary predicates tirand a se-
mantic base for a logic. In our case we considgelahs of the form



60 BL. Nikitchenko and V. G. Tymofieiev

AQEV, A)=<Pr'A [,~, R‘;’ , [X, =4 for various sets of atomic valués(recall

thatPr'“=YA OF Bool is a class of partial predicates oVaJ;

— syntactic componena logic language specified by a class of logieiialas. This
class is determined by the logic signatirewhich includes the infinite set of
namesV, a setPsof predicate symbols and a €& of composition symbols; the
set of formulag-r(Z) is constructed inductively over the set of atofaionulas
AFr(%) with the help of symbols of compositions;

— interpretational (denotational) componera parametric total mapping that pre-
scribes to a formula its meaning as a predicaearReters are algebhQEYV, A)

and interpretation for atomic formulak AFr(V,Ps)[I]i Pr'A called o-
interpretation. A pairAQEV, A), 1) is called a model of the logic. Given a model
M = (AQKYV, A), |) an interpretational mapping for each formdiaspecifies its
meaning as a quasiary predicateAQHYV, A) denotedd,,. Usually models are
represented in simplified form, sag(V, A, 1), calledtrinterpretations; then the
meaning of the formula is denotéd.

A logic defined according to this scheme is dendai@d.

3.1 Algebrasof Quasiary Predicates of Quantifier-Equational L evel

Semantic base of composition-nominative logicpectied by classes of data, predi-
cates, and compositions. The latter are determinethe abstraction level of logic
under consideration and are the same for all logfcthe level. As was formulated
earlier, for the logics of quantifier-equationaléé (QE-level) the class of composi-
tions consists of basic propositional connectiveapmination composition, quantifi-
ers, and equality predicate. The compositions (@xpeopositional connectives) are
parametric with parameters from an infinite sehafesv.
Therefore we consider the following set of composisymbols:

CeoeV)={ L=} O R¥| V=V, Vn), X=(X,....Xq), V is a list of distinct
namesy;, x OV for all i O{1,...,n} , n= 0} O{ x| xOV} O{ =, [ x,ydV}

For the sake of simplicity we will writ€se(V)={ [, R‘;’, X, = }.

Given an algebrdQEV, A)=<Pr'* [, R‘;’, X, =x> we now define interpreta-

tion of composition symbols. Again, for simplicisysake we will use the same nota-
tions for compositions (as operations in the alggbnd their symbols.
In definitions of compositions we will use the fmNing notation:

p(d) | means that a predicgteis defined on datd ;
p(d) 1= b means that a predicgteis defined on datd with a Boolean valué;
p(d) + means that a predicgbeond is undefined;

- for nominative data representation we use the v, —>a; | il]. Nominative

membership relatios denoted byl,. Thus,vi—a, [0,d means that the value of
vi in d is defined and is equal ta; this can be written in another form as
d(v) ! =a.
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Propositional compositionsre defined by the following formulap, (g0 Pr'*,
ddvA):
T,if p(d)!=T or g(d) I1=T,
(pOg)(d) =<F, if p(d) = Fandq(d) i=F,
undefinedn othercases.

T, if p(d) 1= F,
(=p)d) =4 F,if p(d)1=T,
undefinedif p(d)1 .

Unary renomination compositionRY is a mapping RY: Pr"Amh  PrYA
wherev = (vq,...,V,,) and X = (Xq,...,X,) are lists of names from a sétnames fromv
are called upper names of renomination composiiod should be distinct = 0.
Please note thalR‘;’ is a parametric composition which represents ssatd renomina-
tion compositions with different parameters, wharie elements of. This composi-
tion is defined by the following formulgPr'4 dO"A):

(F{Zij_'jjjxrﬂ p) (d) = p([vi—> ally dvO{vy,...vp}] OV > d()[d0x) i O{L,....n}]).
The O operation is defined as follows: df, andd, are two nominative sets, then
d = d,0d, consists of all named pairs df and only those pairs af;, whose names
are not defined (do not have valuesjin
Unary parametric composition of existential qudoifion [k with the parameter
xOV is defined by the following formulg{Pr"*, d VA):
T, if bOA exists: p(ddx— b) I=T,
(X p)(d)=4F, p(ddx+— a)l=F foreachalA,
undefinedn othercases

Here dx — ais a shorter form ford[x— a] .
Finally, null-ary parametric equality compositien, (x, yaV) is defined as follows:

T, if d(X 1 , d(y)! anddXxF d(y),
=y (d) =<T, if d(¥ 1t and d(y) ,
F otherwise

Now we will give definitions for all logics with fixed infinite set of name¥ and a
fixed set of predicate symboRs Note that according to the tradition element¥ of
are also calledariables As semantic components for all logics are theesave need
to define only syntactic and interpretational comgus.
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3.2 Composition-Nominative Logic Loe(Zqe) of Quantifier-Equational L evel

1. Syntactic componend tupleZqoe= (V, {0, =, RY, [X, =}, P9 is calleda signa-
ture of composition-nominative logic of QE-level. Tagimto consideration that a set
of composition symbols is determined by the setaoiablesv, we will use for a signa-
ture a simplified notation\, Pg. Language olqe(>qe) is represented by a class of
formulasFrqe (V, P9, which is defined inductively:

- If POPs then PO Frgg(V, P9. Such formulas are called atomic and belong to
the clasAFrog(V, P9 of atomic formulas.

- If xyOV then 3, O Frgg(V, P9. Such formulas are called atomic and belong to
the clasAFrqg(V, P9 of atomic formulas.

= If &, WOFrog(V, P9 then @M )OFrqe(V, P9 and-®0 Frog(V, PS.

- I Vv=(V,...Vp), X=(X,...X,), V is a list of distinct variables;, x, OV for all

i0{L...,n} ,n 20, ®OFroe (V, P then RY® O Frog (V, PS.

— 1f xOV, ®OFrge(V, P9 thenXdO Frog(V, P9.

Note, that predicate symbols and symbols of nylleampositions are atomic for-
mulas.

2. Interpretational componentet AQE(V, A)=<Pr**, [,~, RY, [X, =, be an al-

gebra of quasiary predicates of quantifier-equatidevel. In this algebra composition
symbols obtain their interpretations as operatmrer predicates. In particular, atomic
formulas for null-ary compositions,,= are interpreted as equality predicates in this
algebra. Thus, we need to specify interpretatioppirays for predicate symbols only.

This is done with a mappin PEZPS M Pr*called ac-interpretation. Having the
interpretational mapping for predicate symbols,caa compositionally construct in-
terpretational mapping for all formulas. A pad@EV, A), IQPE) is called a model for

Loe(Sqe). A model is determined by a tupESE =(V, A, ISE) calledtrinterpretation.

In simplified form interpretations will be denotddFor interpretatiod and a formula
@ the meaning o is denotedb;.

3.3  Composition-Nominative L ogic L geu(Zqeu) of Quantifier-Equational Level
with Unessential Variables

Unessential variables play a role of additional rmgmand are used for “storing” val-
ues during formula transformations. We assumedlsastU of unessential variables is
an infinite subset of (U OV). Informally speaking, logic with unessential adnies is

a logic Loe (Zog) With restriction on interpretations of predicatambols specified by
the setU.

1. Syntactic componenA tuple Zgey =(V, U, {, =, R‘;’, (X, =}, P9 is called a

signature of CNL of QE-level with unessential vates. A class of formulas fargey
is FrQEU (V, U, sz FI’QE (V, Pg .
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2. Interpretational componentet AQE(V, A) = <Pr* [,~, RY, [X, =,> be an
algebra of quasiary predicates of quantifier-equnai level. By calling variables from
U unessential we actually put a restriction on prtetations of predicate symbols. This

restriction asserts that minterpretationlgéu ‘Psm  PrV-Afor everyPOPs and
for everyd"A the value ofl § QEU (P)(d) does not depend on values of variables from

the setU in d. Formally, for everydVA the valuesl § QEU (P)(d) and IQEU (P)(d\\ V)

should either be equal or be undefined simultarigolitere d \\ U= {vi—»al,d |
vU}. A trinterpretation will be denotedQEU =V, U, A IQEU) Indexes may be

omitted if they are clear from the context.
This completes a formal definition of lodigeu(Zqey)-

3.4 Classical First-Order Predicate Logic L geci (Zoect) With Equality

A definition of classical logic differs from deftions of CNL because it is oriented not
on quasiary but on-ary predicates.
1. Syntactic componen tuple>qec. = (V, {0, =, X, =}, Ps arity) is called a sig-

nature of a classical logic with equality (hety: Psm {0,1,2, ...} is a function
that for each predicate symbol yields its arity)signature in a simplified form is de-
noted Y, Ps arity). The languag&rqec, (V, Ps arity) is defined inductively:
If POPs, arity(P)=n, andxy, ...,x, OV, thenP(x, ...,x,) O Froegc. (V, Ps ar-
ity). Such formulas are called atomic and belong daocthssAFrQECL(V Ps arity)
of atomic formulas.
- If x,yOV thenx=y O Fr gec. (V, Ps arity). Such formulas are called atomic and
belong to the clasAFrqoeci(V, Ps arity) of atomic formulas.
= If @, WO Froec. (V, Ps arity) then @@ )OFrgec (V, Ps arity) and-®0
Froec (V, Ps arity).
- 1f xOV, ®0 Frgeey (V, Ps arity) then[k®O Froec, (V, Ps arity).

2. Interpretational componentet AQE(V, A)=<Pr¥* [,-, R}, [X, =,> be an al-
gebra of quasiary predicates of QE-level (for dtaddogic we assume thétis non-
empty). Note that the renomination compositionrisspnt as operation in this alge-
bra, though it is not explicitly used in classitagic. Formulas of the language are
interpreted as predicates in this algebra. Atominfilax=y is interpreted as a predi-
cate 3,. To give an interpretation of atomic formulas bé tform P( xy, ..., xn) we
need to specify an interpretational mapping fodfm@te symbols. In case of classical
logic it is specified by a mapping,ﬁf\r: psmd U(An m Bool) such that

n=0
NAr (P)OA" .  Boolif arity(P) =n for POPs. This mapping interprets predi-
cate symbols as totah-ary predicates. Thusrrinterpretations have the form
CLE =(V, A, arity, INAr) Such Trinterpretation JCLE (or simply J) for every
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atomic formula P(xy, ...,x,) definesits meaning inPr'* as a predicat@(xy,...,xn);
such thatP( xy, ...,xn); (d) =1 ﬁf\r (P)(d(xy), ..., d(x,)) for everyd OVA; if one of the
valuesd(x,), ..., d(x,) is not defined the®( xy, ...,xn); is undefined or. Let us note
that in classical logid is calledvariable valuationor variable assignmenfhe mean-
ing @, of a complex formulaP Froec, (Ps V, arity) is defined in a usual way.

For all three logics derived compositions (sucle@gunction &, universal quantifi-
cationlx, negated equality,, etc.) are defined in a traditional way. In thesqve

consider formulas in their traditional form usingproperations and brackets; brackets
can be omitted according to common rules for theripies of operations (priority of
the binary disjunction is weaker than priory of ghaperations). We will also consider

a more general case for,ﬁir permittingpartial n-ary predicates as values of predi-

cate symbols, thusi,,’f,ir (P)OA" O Bool still, this generalization does not affect
the satisfiability problem due to monotonicity afnsidered compositions under predi-
cate extensions [13].

To simplify notation we will often omit parameteo$ logic signatures and write
simply Log, Loeu, @andLgec; for classes of formulas we use notatiingg, Froeu,
and Frqecy; formulas of these classes will be called QE-, QEld CL-formulasTe
interpretations irLqg, Loeu, Loec. Will also be called QE-, QEU-, CL-interpretations
respectively.

35 Satisfiability Problem

For all three logics the definition of satisfiabjilitan be given in the same way.

A formula @ is calledsatisfiablein a 7zinterpretationd if there isd O YA such that
@, (d)|=T. We shall denote this by ®. A formula® is calledsatisfiableif there
exists an interpretatiod in which @ is satisfiable. We shall denote this asb] We
call formulas® and W equisatisfiableif they are either both satisfiable or both not
satisfiable (i.e., unsatisfiable). When needed weunderline the corresponding logic
in the satisfiability sigri=, e.9.[Fqe. [Foeu » O FQECL -

Satisfiability of a formula is related to its vati A formula @ is calledvalid in a
7einterpretationd if there is nad O YA such thaw; (d)|= F. We shall denote this as
J |=®, which means thab is not refutable id. A formula® is calledvalid if J|=®
for every interpretatiod. We call formulagb andW equivalent if ®; =W, for every
interpretation].

Due to possible presence of a nowhere defined gatd{which is a valid predicate)
we do not have in CNL the property thiatis satisfiable ifd is valid (which holds for
classical first-order logic). But reduction of sdiability to validity still holds in CNL:
formula® is satisfiable in azinterpretation] iff =@ is not valid inJ.
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4 Reduction of Satisfiability Problem for Loe(Zqe)

The problem discussed in this paper is to checkhveng=qg @ holds given an arbi-

trary formula®OFrqe(W, P9); here we choos®/ as an initial set of variables in the
considered logic. Oumain aim is to transform this QE-formut to an equisatisfi-
able formula®, of classical first-order predicate logic with eqtiako that we can
use existent methods for solving this problem depexdiofor classical logic. To carry
out necessary equivalent transformations we nearbmsider® in an intermediate
logic — CNL of QE-level with unessential variablegxtending the initial set of vari-
ablesW with a setU of unessential variablg@VnU=0). For these needs we will
consider a logit.oey with the signatur&oey =(V, U, {0}, =, RY, [X, =}, P9, where

V=WOU. Within Lggy we transform® to a formula® g being in a special normal
form; then the latter formula is translated tocitsssical counterpai® ;.
The overall circular reduction scheme is groundedotiowing statements.

From |zqg ® follows [rqey @ (lemma 1).

From [zqey @ follows |Fqey Pyr (lemma 2, 3).
From |:QEU CDUR follows |:QECL CDCL (Iemma 4)
From |:QECL CDCLfO”OWS |:QEU CDUR (lemma 5)

From [=qgy ®yr follows [roey ® (lemma 2).

o gk wDd PR

From [=qgy @ follows [=qg ® (lemma 6).

Lemma 1. Let ®0Frog(W, Pg). Then fromf=gg @ follows [=qey @ .

Consider the transformation rules (T1-T9) of thenfo®| > ®,, where @,
®, OFrgey (V,U).

TR} =4y =55

T2)RV-® 5 - RV®

T3)RY (@, 0P,) > RV, ORY D,

T4 va ..... VoW W mva,...vn,ul,...uk¢|_>va ..... N W W m’ul""“kcb
)Xl ----- XYL Ym o SLieeSp0 e Zk 1o 0, Y10 Yo B Bk

T5) RY Oy @ > Oy RY®, wheny[{ v, X}
T6)RYY Ly ® > Oy RY(P)
T7) Ri"; yd — [u R;‘; RY @, u0U, u does not occur in the formula on the

left hand side of the rule.
T8) Rg P Ri:g P (in case when vectors,v are empty this rule is represented as

P RIP.
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Here for the rule T1X = xV/X), ¥y =y({/X), for the rule T4a; = s(va,...Vn,

Wi, oWm [ Xgee Xy YoeeoYm)s B =Z4(Vaee . Vay, Waeo. Wi [ Xgpeeo Xy Ya,0..¥m), Where
r(by,... 04/ C,...0q) =1 if rO{by,... g}, r(by,... 047 C1,....05) =G if r =b; for somei.

The rule T4 represents explicitly the result ofdtional composition of parameters
of two successive renominations.

The rule T7 permits to assume w.l.0.g. that allgjifiad variables in initial formula
are different.

Lemma 2. Let @, ®, OFrggy (V,U,Ps) be such formulas tha®, is a result of

application of some T1-T9 rule W@, . Then®, and ®, are equisatisfiable ibgey.

A formula @ is said to be inunified renominativenormal form(URNF) if the fol-
lowing requirements are satisfied:
- the renomination composition is only appliedfirto predicate symbols. It means

that for every sub-formula of the forR; W we have tha [IPs
— for every pair of its renominative ator‘ﬁ% P and R%V Q we have that vectora

and W coincide; so, in all renominative atoms the listgheir upper names are
the same;

- for every renominative atorR‘:)’(P and every quantifiefy that occurs in the ini-
tial formula® we have thaty v .
When formula is inURNF we call its atomic subformul&YP a renominative

atom(PIP9g). Note that if a formula is ilRNFthen every its subformula is in URNF
as well.

Lemma 3. Given an arbitrary formula® O Frggy (V,U,Ps) we can construct its

unified renominative normal formarnf[ ®] by applying rules T1-T9.
According to lemmas 2 and 3, we can think of al totalti-valued (non-deterministic)

mapping urnf : Frogy o Froey that transforms in a satisfiability-preserving

way every QEU-formula to its URNF.

In order to reduce the satisfiability problemLigey to that ofLgec, we extend the
set of basic valueéd with additional values . Informally, this value will represent
undefined components of nominative sets.

We formalize the syntactical reduction clf : Frogy (V,U,Ps) m
FroecL(V,Psarity) of QEU-formulas in unified renominative normal forto CL-

formulas inductively as follows:
1. clf[P]=P

2. clf[=4] ==y
Vi.Vn b=

3. CIf[Rxll,...,Qn P] = P(Xq,..-,Xp)

4. clf[~®]= ~clf[®]
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5. clf[(®; O0dD,)] =(clf[Pq] Oclf[P5])
6. clf[(x®]= x(x#e&clf[P]), edU , eis a predefined variable.

Note that all applications of the 6-th rule intraduthe same variabke e is some

predefined variable frord in the sense that it does not occur in URNF.

This reduction transforms the formula to the largguaf classical logic but pre-
serves its satisfiability.

Given a formula® U Frogy (V,U, Ps) in unified renominative normal form we de-
note by Vg OV the set of all variables that occur as upper naimegnominative

atoms of® .
Lemma 4. Let ® be a formula in unified renominative normal foranJ Froe(V, U,
Ps). Then froml=qgy ® follows |=qec clf[®] .

Lemma 5. Let @ be a formula in renominative normal ford, O Froe(V, U, P9.
Then from=ggcy clf[®] follows |=gey @ -
Lemma 6. Let PLFrog(W, Pg. Then fromj=ggy ® follows |z ® .

Lemmas 1-6 justify all reductions described in dinécle and the main theorem of the
article.
Theorem. Let ®0Frog(W, P9. Then [=qe ® if and only if [=qecy urnflclf[®]] .

The theorem states the reduction of satisfiabpityblem in composition-nominative
logic of quantifier-equational level to the sa@flity problem in classical first-order
logic with equality.

Let us illustrate the method proposed on a simgdenple.
Example. Consider the following QE-formuld with one predicate symb#l:

® = P& R¢(=2y &0z-P)
Let us construct its unified renominative normahfo® .

d=P& R)§(=Zy &[0z-P) +— [ push the renomination down to predicate symbols/
> P& =y & RZ(0z ~P) - /renomination is removed due to Tié#

> P& =,y &(Uz~ P) > /add RZ to P as the predicate occurs undéz/ —

= P& =,y &(0z - RZ P) i /unify renominative atomsH-

- RIP& =, &0z -R7 P =®yp.

Note that we use derived transformation rules llaaidle compositions & andl .

Now @ =cnl[®Pyr]= R & x=y&0OZA(z#Z€) - = P(2)). Formula & is
satisfiable inLc . That means tha® is satisfiable ifqe.

Indeed, letd = (W, A, 1) be such an interpretation the#={x,y,2, A={1,2}. Let
I(P)(d)! =F if a pair z> ald, d for somealJA and T in all other cases. In other
words, the predicate takes the valu& on some datd if the variablez is undefined in
d. Now we have thab;([x—~ Ly 1] =T.
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5 Related work

Many different aspects of the composition-nomiraatapproach such as partiality,
compositionality, nominativity, have long history development, which is also re-
flected in works in the field of logic and compussience.

The importance of partiality, for example, was athg being discussed in detail by
the time of 80-ties [14], and many different apptoes have emerged since that time.
In [15, 16] there is a survey of some of those aedmparison of different formalisms.
Partiality receives more and more attention nowagdtne support for partial functions
is being introduced in theorem proving systems\aaiidlity checkers [17, 18].

Compositionality can be traced back to works of€&ge; the history of this princi-
ple is presented in [19]. The importance of the positionality principle grows due to
the necessity of investigation and verificationcofmplex systems [20, 21], in particu-
lar, concurrent systems [22]. Our approach takespositionality as a basic principle,
thus, the constructed formal languages are conipositby construction when we
consider functions (predicates) as meanings ofessgons (of formulas).

Nominativity is also a fundamental aspect not anlgomputer science but in other
branches of science as well, especially in philbgod his topic requires a special
treatment, but here we would like to mention norniogic [23] only, which has simi-
larities with the logic defined in this paper. Nomditogic addresses such special ques-
tions of nominativity as name bindings, swappimg] &eshnesd he predicates inves-
tigated in nominal logic should be equivariant {thalidity is invariant under name
swapping); in our work we consider general clasdgmrtial predicates.

A thorough comparison of composition-nominative rapgh with other approaches
that address compositionality, nominativity or alloeasoning about partial functions
and predicates is by far beyond the scope of tgiep but still we would like to stress
on the important differences. Our approach is basedlgebras of partial predicates
over nominative data, and especially, algebrasuakigry functions and predicates as
opposed to traditional algebrasmeéry functions and predicates. It involves new com-
positions, in particular, renomination compositiamich take into account nominative
aspects of data structures. Composition-nominaweroach also prescribes the se-
mantic-syntactic style of logic definitions. Thiyle simplifies construction and inves-
tigation of such logics.

6 Conclusions

This paper investigates the satisfiability probléan composition-nominative logic
(CNL) of quantifier-equational level. As a main ué#sve have shown that this prob-
lem can be reduced by using more powerful langtiagke satisfiability problem for
classical predicate logic with equality. Thus, &g state-of-the-art methods and
techniques for checking satisfiability in classilmjics can also be applied to CNL.
Future work on the topic will include investigatiai satisfiability problem for
richer CNL of predicate-function level and for CNlver hierarchic nominative data.
Hierarchic data permit to represent such complaictires as lists, stacks, arrays etc;
thus, such logics will be closer to program modéth more rich data types. Another
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direction is related with identification of classafsformulas in various types of CNL
for which satisfiability problem can be solved eiffintly. In particular, this concerns
specialized theories, where some predicates haafefispinterpretations and several
axioms shall hold for such interpretations. Thisoften referred to as satisfiability
modulo theory (SMT) problem [24]. At last, protoggof software systems for satisfi-
ability checking in CNL should be developed.
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