
An Aspect-Oriented Approach to Relating
Security Requirements and Access Control?

Azadeh Alebrahim1, Thein Than Tun2, Yijun Yu2,
Maritta Heisel1, and Bashar Nuseibeh2,3

1 paluno – The Ruhr Institute for Software Technology,
University of Duisburg-Essen, Germany

{azadeh.alebrahim,maritta.heisel}@paluno.uni-due.de
2 Department of Computing, The Open University, Milton Keynes, UK

{t.t.tun,y.yu,b.nuseibeh}@open.ac.uk
3 Lero – The Irish Software Engineering Research Centre,

University of Limerick, Ireland

Abstract. Affecting multiple parts in software systems, security re-
quirements often tangle with functional requirements. In order to sepa-
rate crosscutting concerns and increase modularity, we propose to repre-
sent security requirements as aspects that can be woven into functional
requirements. Using problem frames to model the functional require-
ments, weaving is achieved by composing the modules representing secu-
rity aspects with the requirement models. Moreover, we provide guidance
on how such security aspects are structured to implement a particular ac-
cess control solution. As a result, such security aspects become reusable
solution patterns to refine the structure of security-related problem.

Key words: security requirement, aspect-oriented requirements engi-
neering, security pattern, access control, problem frames

1 Introduction

Aspect-Oriented Programming (AOP) [4] is a programming paradigm that deals
with crosscutting concerns at the implementation level in order to achieve a sep-
aration of crosscutting concerns. The crosscutting concerns are encapsulated
into separate modules, known as aspects, that can be woven into a base sys-
tem without altering its structure. This provides support for modularity and
maintainability. The aspect-oriented concept has been adapted for earlier stages
of software development, known as Aspect-Oriented Requirements Engineering
(AORE) [11] to deal with crosscutting concerns at the requirements level. Qual-
ity concerns [1] such as security affect several parts of software systems, and are
considered as crosscutting concerns. The first focus of this paper is on providing
support for the separation of security requirements from functional requirements
by modularising them into aspects.
The second focus of this paper is on providing guidance for refining the security
aspects at the requirements level by reusing knowledge located in the solution
space to bridge the gap between security problems and their solutions. The

? Part of this work is supported by the German Research Foundation (DFG) grant
HE3322/4-1 and the Science Foundation Ireland grant 10/CE/I1855.

elaborated security aspects can be transformed into a particular solution at the
design level. We believe that requirement descriptions cannot be considered in
isolation and should be developed with architectural descriptions concurrently, as
described by the Twin Peaks model [9]. Patterns describe solutions for recurring
problems in software development, thus providing a means to reuse knowledge.
Security patterns [12] provide solutions for software problems in the context of
security. We aim to leverage security patterns as solution artefacts to refine the
security aspects.
The remainder of this paper is structured as follows. Section 2 describes our
approach by taking into account access control as a crosscutting security concern
and problem frames as a requirements engineering method. Section 3 discusses
related work. Conclusions and discussions of future work are given in Section 4.

2 Our Approach using Problem Frames and Access
Control

The proposed approach has four steps. As suggested earlier, requirements and
architectural descriptions should be considered as intertwining artefacts influ-
encing each other. Therefore our method is illustrated as an instantiation of the
Twin Peaks model [9] (see Figure 1). Considering security requirements as cross-
cutting concerns that can be modularised into separate aspects, we refine them
by using security patterns as solution artefacts. The weaving of aspects into the
functionality of the software system is achieved by composing the refined aspects
with the functional artefacts. To illustrate these concepts, we use access control
as the example and problem frames [3] as the requirements engineering method.
We use the problem frames approach, because it allows us to navigate between
the problem space and the solution space, while exploring problem structures
using problem diagrams and solutions structures using patterns. This ability to
express and relate the structures of problems and solutions is crucial for the
proposed approach.
Problem frames are means to describe and classify software development prob-
lems. A problem frame represents a class of software problems. It is described
by a frame diagram, which consists of domains, interfaces between them, and a
requirement (see Figure 3). The objective of problem solving is to construct a ma-
chine (i.e., software) that controls the behaviour of the environment (in which it
is integrated) in accordance with the requirements. Requirements analysis with
problem frames decomposes the overall problem into subproblems, which can
also be represented by problem diagrams. A problem diagram is an instance of a
problem frame. Machines in problem diagrams represent solutions for functional
requirements. We call them functional machines to distinguish them from ma-
chines representing solutions for security requirements that we introduce later
in this section.

2.1 Identifying Access Control (AC) as an Aspect

Different modules representing different functional requirements in a system usu-
ally share common security concerns. Treating security requirements in isolation

2

Problem Peak Solution Peak
 Security
Requirements

Security
Patterns

Architecture

Problem Frames

 Functional
Requirements

apply

 create
(possible further step)

select set of

select particular

Security
Aspects 2

B

A

C

Composed
 Models

4

1

General

Detailed

Le
ve

l o
f d

et
ai

l

Independent Dependent

Implementation dependence

Refined Security
 Aspects

3

Fig. 1. Overview of our method embedded in the Twin Peaks Model [9]

from the functional requirements enables increased modularity and maintain-
ability of the software. This idea is supported by AORE, which seems to be a
promising approach to deal with quality requirements as crosscutting concerns to
be separated from the functional requirements [11]. The first step in our method
is therefore to identify the crosscutting security concerns that can be captured
as a single security requirement, represented as an aspect (step 1 in Figure 1).

Access control verifies whether a subject has the permission to access an object
within the system. Therefore each user (subject) requesting access to the sen-
sitive parts of a system (object) should be checked for a permission. Thus, we
could express the security requirement addressing access control over a functional
requirement as follows:

– SR: Only subject with permission to access the object before carrying out a
function.

We introduce the advice frame to express such an access control requirement.
The advice frame is illustrated in Figure 2. There is a Subject assumed to be a
biddable domain, as shown by B in the lower right of the rectangle. The subject
issues commands requesting access to an Object, which can be modelled as either
a causal domain or a lexical domain. The Controller machine shall authorize the
subject, validate the command and change the state of the object according
to the command. If a user is not authorized or a command is not valid, the
Controller machine shall do nothing. We make the behaviour of the identified
security machine more concrete by describing its specification as follows:

SUBJECT INPUT: userId,command,object

IF SUBJECT INPUT is valid

THEN (Controller (C) does changeState;

Controller (C) performs do(command,object);)

ENDIF

Note that the identified security concern is considered in isolation in this step.
Therefore it cannot be fully specified. We refine the specification as we proceed.

3

Object

 Only subject
with permission
can do command
 on the object

B

S!{userId,command,object} userId,command,object

C!{changeState,do(command,object),
doNothing},O!{objectStates}

objectEffects

Subject

Controller

AC

X/C

Fig. 2. Advice frame representing access control

2.2 Capturing Functional Requirements into Problem Diagrams

At the step two, we model functional requirements by using problem frames (see
step 2 in Figure 1). Most security relevant systems contain sensitive information
that should not be accessible to all users of the system. Sensitive information
to be protected in a system is represented as either a causal or a lexical do-
main. Users are represented as biddable domains. Therefore such problems are
generally modeled in problem frames either by the commanded behaviour frame
containing a causal domain as sensitive information or by the simple workpieces
frame containing a lexical domain as sensitive information, illustrated in Fig-
ure 3.
The commanded behaviour problem frame represents the problem of controlling
some parts of the (Controlled domain) in the physical world by the machine
(Control machine) according to commands issued by the Operator. The simple
workpieces problem frame describes the problem of creating or editing a text
or graphic (Workpieces) by the machine (Editing tool) according to the User
commands (for details, see [3]).

E4

Control
machine

CM!C1
CD!C2

Controlled
domain

C

B

Operator
OP!E4

C3

Commanded
behaviour

E3

Y4

tool
effects

WP!Y2
X

Workpieces

User

ET!E1

US!E3

CommandEditing

B

Fig. 3. Commanded Behaviour and Simple Workpieces Frames

2.3 Refining the Access Control Aspect using the RBAC Pattern

Security patterns [12], located in the solution space, provide a widely accepted
means to build secure software. Usage of security patterns as solution artefacts
aids to address security aspects in the problem space, which is the aim of step 3.
Substeps A–C illustrated in Figure 1 deal with selecting and applying the most
appropriate security pattern in order to refine the identified security aspect.
Exactly how a pattern is selected in this approach is a topic for further research.
In this work, we describe a way to structure the security machines, which are
considered as black boxes with an unknown structure so far, using using security
patterns.

4

Checking
role
machine

Object

X

B

Subject

 Only Subject
 with permission
can do command
 on the Object

 Id-Role-Right
 data

X

Checking
right
machine

userId,command,object

objectEffects

S!{userId,command,object}

CRiM!{changeState,do(command,object)},
O!{objectStates}

CRoM!{checkRoles},
IRRD!{role}

CRiM!{checkRights},
IRRD!{right}

CRoM!{(role,command,object)}

Fig. 4. Refined advice frame by using RBAC pattern

Since verifying permission is a frequently recurring problem in security relevant
systems, it has been treated by several access control patterns [12]. Access control
patterns define security constraints regarding access to resources. Role-Based
Access Control (RBAC) provides access to resources based on functions of people
in an environment (roles) and the kind of permission they have (rights). The
User represents a registered user with certain id assigned to a predefined Role.
Roles are assigned Rights in accordance with their functions. Rights define and
check what resource the user is authorized to access.
Looking at the RBAC pattern in the solution space gives aid to decompose the
advice machine. We identify two subproblems, Checking role and Checking right
(see Figure 4). The Checking role subproblem represents the problem of check-
ing the role assigned to the User, who is represented by the biddable domain
Subject in Figure 4. The Checking role machine verifies whether the subject id
is contained in the Id-Role-Right data. If there is no id-role relation the machine
does nothing. If such a relation exists the machine passes a pair of role and com-
mand on to the Checking right machine. We specify the Checking role machine
as stated below:
SUBJECT INPUT: userId,command,object

Checking role machine (CRoM) identifies the role of userId

IF there is a role for userId THEN Checking role machine (CRoM) passes

(role,command,object) to Checking right machine (CRiM);

ENDIF

The Checking right machine checks if a particular role is authorized to perform
an operation on the object. If the subject with the particular role holds the
right to perform the command, the machine changes the state of the object and
performs the operation. Otherwise the machine does nothing:
INPUT: role,command,object

Checking right machine (CRiM) checks whether the role is allowed to perform command on the object

IF the role is allowed THEN (Checking right machine (CRiM) does changeState;

Checking right machine (CRiM) performs do(command,object);)

ENDIF

2.4 Weaving Aspects into Problem Diagrams

We now introduce a weaving frame to compose the refined security aspect with
the problem diagrams (step 4 in Figure 1). The weaving frame includes all the

5

userId,command,workpieces

Editing
tool

Workpieces

B
User

workpiecesEffects

 Only User with
permission can do
command on the
 Workpieces

U!{userId, command,workpieces}

C!{command,workpieces}

ET!{do(command,workpieces)}
WP!{workpiecesStates}

X

Controller

RBAC

C!{changeState}

C

Fig. 5. Abstract weaving frame

domains from the basic problem frame (commanded behaviour or simple work-
pieces), including both the functional machine and the advice machine. We com-
plete the specification of the external behaviour of the security aspect outlined
in step 1. The internal behaviour remains unchanged as specified in step 3.
The weaving is achieved by mapping domains in the basic problem frame to
domains in the advice frame. The domains Controlled domain/Workpieces in
Figure 3 are mapped to the Object domain in the advice frame, and the domain
User to the domain Subject. We consider the case for the simple workpieces
frame as functional frame in the following. The weaving of the functional frame
commanded behaviour is carried out analogously. We define join points, which
represent transformation rules to transform the functional frame into the weaving
frame by means of weaving of the advice frame. Changes in addition to mappings
are italicised. In order to affect the behaviour of the functional machine by
verifying user inputs, we place the advice machine on the interface between the
User domain and the Editing tool (see Figure 5).

Join points User = Subject, Workpieces = Object, Editing tool = Edit-
ing tool, E3 = {userId,command,object}, Y4 = objectEf-
fects, Y2 = {objectState}, E1 = {do(command,workpieces)},
ADD domain Controller, ADD interface with phenomena
C!{command,workpieces}, ADD interface with phenomena
C!{changeState}

The advice machine passes the valid command to the functional machine, which
performs directly the operation on the Workpieces domain according to the User
command. We specify the advice machine as follows:
USER INPUT: userId,command,workpieces

IF USER INPUT is valid

THEN (Controller (C) passes (command,workpieces) on Editing tool;

Controller (C) does changeState;)

ENDIF

Figure 6 illustrates how the refined RBAC aspect woven into the simple work-
pieces frame diagram.
Applying our method to a software development problem, we achieve modularity
as the access control requirement is now captured as an RBAC aspect. As a result
potential changes to this module do not affect the functional models, increasing
the maintainability of the system. We made the internal structure and behaviour
of the access control machine more concrete by applying the RBAC pattern as
solution and describing its specification in detail. Here the access control machine

6

Checking
role
machine

Workpieces
X

B
User

 Only User with
permission can do
command on the
 Workpieces Id-Role-Right

 data
X

Checking
right
machine

Editing
tool

userId,command,workpieces

workpiecesEffects

CRoM!{command,workpieces}

ET!{do(command,workpieces},WP!{workpiecesStates}

CRoM!{(role,command,workpieces)}

U!{userId,command,workpieces}

CRoM!{checkRoles},
IRRD!{role}

CRiM!{checkRights},
IRRD!{right}

CRiM!{changeState}
C

Fig. 6. Refined weaving frame

is not considered as a black box anymore: we have taken one step further towards
implementing RBAC as a particular solution for the access control requirement,
thus bridging the gap between the problem and the solution space.

3 Related Work

An AORE model to support the separation of functional and quality concerns is
proposed by Rashid et al. [11]. Quality concerns are identified and refined as as-
pects, which are prioritised in order to resolve conflicts among them. In contrast
to our work, Moreira et al. [7] augment the AORE model by a uniform treat-
ment of functional and quality concerns. The method proposed in [8] integrates
crosscutting quality attributes into the functional description after identifying
and specifying them. However it does not consider solution approaches to refine
the crosscutting quality attributes as our approach does. Unlike the goal aspect
approach [13], where quality softgoals are refined as aspectual tasks, problem
frames-based approach allows navigating between them through physically con-
nected interfaces.

There exists some work that relates aspect concepts to problem frames. Laney
et al. [5] propose resolving inconsistencies when composing multiple problem
frames. Here we specialise the composition frames to weave security aspects into
functional structures. The approach proposed by Lencastre et al. [6] incorporates
aspect concepts into problem frames by extending an existing meta-model to
express crosscutting relationships between different element types of problem
frames. Their work does not focus on treating quality requirements as aspects.

The aforementioned approaches in contrast to our work only discuss methods to
incorporate crosscutting concerns into the requirement models. We take one step
further towards bridging the gap between the problem and the solution space.

The security Twin Peaks model [2] (an elaboration of the original Twin Peaks
model [9]) is a framework for developing security in the requirements and the
architectural artefacts in parallel. Taking architectural security patterns into
account, the model supports the elaboration of the problem and the solution
artefacts. Similar to our work, a method to bridge the gap between security
requirements and the design is proposed by Okubo et al. [10]. This method
introduces new security patterns at the requirements and the design level, in
contrast to our approach that reuses the existing security design patterns at the
requirements level.

7

4 Conclusions and Future Work
We have proposed a method using problem frames to refine the security aspects
in the problem space by using the artefacts located in the solution space. We
have selected access control as one important security concern to illustrate the
refining process. The benefits of our approach are twofold. The first is that
we separate security requirements from functional requirements and encapsulate
them into separate modules as aspects. Thus we achieve a separation of concerns
that increases the modularity of the software. The second benefit is that we
give guidance how the security aspects need to be structured to fit a particular
solution. To this end we have used security patterns as solutions artefacts to
refine the problem structure.
In future work, we will investigate how to find the most suitable security pat-
tern in the set of available security patterns. Finding the most suitable security
pattern depends on the context and also on the functional requirements. We
will extend the scope of this work by considering different security requirement
aspects that need different security patterns to be satisfied.

Acknowledgments. We would like to thank Takao Okubo, Nobukazu Yosh-
ioka, and Haruhiko Kaiya for useful discussions.

References

1. L. Chung, B. Nixon, E. Yu, and J. Mylopoulos. Non-functional Requirements in
Software Engineering. Kluwer Academic Publishers, 2000.

2. T. Heyman, K. Yskout, R. Scandariato, H. Schmidt, and Y. Yu. The security twin
peaks. In ESSoS’11, LNCS 6542, pages 167–180. Springer, 2011.

3. M. Jackson. Problem Frames. Analyzing and structuring software development
problems. Addison-Wesley, 2001.

4. G. Kiczales and E. Hilsdale. Aspect-oriented programming. In ESEC’01/FSE-9,
pages 313–, USA, 2001. ACM.

5. R. Laney, L. Barroca, M. Jackson, and B. Nuseibeh. Composing requirements
using problem frames. In RE’04, pages 122–131. IEEE Computer Society, 2004.

6. M. Lencastre, J. Araujo, A. Moreira, and J. Castro. Analyzing crosscutting in the
problem frames approach. In IWAAPF’06, pages 59–64, USA, 2006. ACM.

7. A. Moreira, J. ao Araújo, and A. Rashid. A concern-oriented requirements engi-
neering model. In CAiSE’05, pages 293–308. Springer, 2005.

8. A. Moreira, J. a. Araújo, and I. Brito. Crosscutting quality attributes for require-
ments engineering. In SEKE’02, pages 167–174, USA, 2002. ACM.

9. B. Nuseibeh. Weaving together requirements and architectures. IEEE Computer,
34(3):115–117, 2001.

10. T. Okubo, H. Kaiya, and N. Yoshioka. Effective Security Impact Analysis with
Patterns for Software Enhancement. In ARES’11, pages 527–534, 2011.

11. A. Rashid, A. Moreira, and J. Araújo. Modularisation and composition of aspectual
requirements. In AOSD’03, pages 11–20, USA, 2003. ACM.

12. M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann, and P. Som-
merlad. Security patterns: integrating security and systems engineering. John Wiley
& Sons, 2005.

13. Y. Yu, J. C. S. do Prado Leite, and J. Mylopoulos. From goals to aspects: Discov-
ering aspects from requirements goal models. In RE, pages 38–47. IEEE Computer
Society, 2004.

8

