
Exploiting Unexploited Computing Resources for
Computational Logics?

Alessandro Dal Palù1, Agostino Dovier2, Andrea Formisano3, and Enrico Pontelli4

1 Università di Parma, alessandro.dalpalu@unipr.it
2 Università di Udine, agostino.dovier@uniud.it

3 Università di Perugia, formis@dmi.unipg.it
4 New Mexico State University, epontell@cs.nmsu.edu

Abstract. We present an investigation of the use of GPGPU techniques to par-
allelize the execution of a satisfiability solver, based on the traditional DPLL
procedure—which, in spite of its simplicity, still represents the core of the most
competitive solvers. The investigation tackles some interesting problems, includ-
ing the use of a predominantly data-parallel architecture, like NVIDIA’s CUDA
platform, for the execution of relatively “heavy” threads, associated to tradition-
ally sequential computations (e.g., unit propagation), non-deterministic computa-
tions (e.g., variable splitting), and meta-heuristics to guide search. Experimenta-
tion confirms the potential for significant speedups from the use of GPGPUs, even
with relatively simple modifications to the structure of the DPLL procedures—
which should facilitate the porting of such ideas to other DPLL-based solvers.

1 Introduction

Propositional Satisfiability Testing (also known as SAT solving or, simply, SAT) [7] is
the problem of determining whether a propositional logical formula T , typically ex-
pressed in conjunctive normal form, is satisfiable. That is, the problem is to determine
whether there exists at least one assignment of Boolean values to the logical variables
present in T such that the formula evaluates to TRUE.

SAT solving is a fundamental problem in computer science. From the theoretical
perspective, the SAT decision problem was the first decision problem to be proved to
be NP-Complete—thus, representing a cornerstone of computational complexity the-
ory. SAT represents also a core practical problem underlying applications in a variety
of domains, such as computational biology [8], verification and model checking [18],
circuit design [19], and various forms of theorem proving and logic programming (e.g.,
[14, 11]). The widespread practical use of SAT has prompted extensive research in the
development of efficient algorithms and data structures for SAT solvers—enabling the
resolution of problems with thousands of variables and millions of formula components
(e.g., as demonstrated by the results in recent SAT competitions [1]).

Even in the face of these impressive accomplishments, there are several classes of
problems that are out of reach of the available solvers—in particular, there is evidence
? This work is partially supported by GNCS-11, PRIN 20089M932N, NSF 0812267, NSF 0947465. We would like to thank

our students and collaborators Luca Da Rin Fioretto, Francesco Peloi, and Gabriele Savio for their help in the implemen-
tation and testing. We would like to thank also Federico Bergenti and Gianfranco Rossi for the useful discussions.

in the literature [12] showing that even the most sophisticated solvers have limits in
scalability, and it is unclear whether such limits can be addressed by simple algorith-
mic and heuristic enhancements. This state of affairs has pushed research towards the
exploration of alternative approaches—in particular, fueling research in the domain of
parallel SAT solving. Parallel SAT solving takes advantage of architectures with mul-
tiple processors to speed up the exploration of the search space of alternative variable
assignments. Existing approaches tend to either tackle the approach from the point of
view of parallelizing the search process—by dividing the search space of possible vari-
able assignments among processors (e.g., [20, 3, 5, 21, 10, 13])—or through the paral-
lelization of other aspects of the resolution process, such as parallelization of the space
of parameters, as in portfolio methods (e.g., [12]).

The work discussed in this paper is aligned with the literature on parallel SAT
solving—specifically with the approaches aimed at parallelizing the exploration of the
search space by distributing it among concurrent computations. The novelty of our ap-
proach lies on the use of a GPGPU (General Purpose computation on Graphics Pro-
cessing Units) approach to tackle the problem. This line of work is interesting under
two orthogonal perspectives:
Opportunity: Traditional approaches to parallel SAT rely on general purpose archi-

tectures—i.e., either tightly coupled architectures (e.g., multicore or other forms of
shared memory platforms) or loosely coupled architectures (e.g., Beowulf clusters).
The former are widely available, the availability of shared memory enables a rela-
tively simpler parallelization (e.g., it is easier to derive effective dynamic load bal-
ancing solutions), but it limits scalability. The latter offer greater opportunities to
scale to several hundreds of cores, but are more expensive, relatively less commonly
available, and the communication costs require significantly more expensive trade-
offs in terms of load balancing. GPGPU overcomes both problems—GPUs provide
access to large numbers of processing elements and they are widely available in
commodity architectures.

Challenge: The majority of parallel SAT solutions proposed in the literature are task-
parallel solutions, where parts of the search space (i.e., sets of alternative variable as-
signments) are asynchronously explored by different processors. On the other hand,
GPUs have been predominantly used for data parallel and SIMD-style computations.
The mapping of a parallel exploration of the SAT search space on GPUs is the chal-
lenge we address.

We propose a first approach to this problem. We present the design of a GPU-based
version of the Davis-Putnam-Logemann-Loveland (DPLL) procedure [9]—DPLL is at
the core of the majority of existing SAT solvers. The proposed solution builds on the
specific computational and memory model provided by NVIDIA’s CUDA architecture.

2 CUDA

CUDA is the acronym of Compute Unified Device Architecture. This framework for par-
allel computing allows one to exploit GPU’s capabilities for general purpose programs
on NVIDIA architectures. For an introduction to CUDA programming we suggest [15].

We provide here a brief overview, adequate to allow the understanding of the following
sections of this paper.

Host, global, device. A CUDA program is a high-level program that can be par-
tially run on a GPU. The computer CPU (from now on, called host) and the (general
purpose) Graphics Process Unit (or GPU, from now on, called device) can be controlled
by a CUDA program that can take advantage of both resources. We refer to C CUDA
programs only—other programming languages may involve a slightly different syntax.
The code is handled by the nvcc compiler, which is in charge of mapping GPU parallel
tasks to the video card.

Every function in a CUDA program is labeled as host (the default), global, or
device. A host function runs in the host and it is a standard C function. A global
function is called by a host function but it runs on the device. global functions are
also called CUDA kernel functions. A device function can be called only by a func-
tion running on the device (global or device) and it runs on the device. Functions
running on the device must adhere to some restrictions, depending on GPU’s capa-
bilities. In particular, limitations about the number of registers per thread and shared
memories should be carefully handled.

Grids, blocks, threads. A general purpose GPU is a parallel machine. The hard-
ware architecture contains a set of multiprocessors and each of them can run a number
of parallel threads. The memory hierarchy is rather different from the traditional CPU
multi-core structure (details in the following paragraph). In order to create a uniform
and independent view of the hardware, a logical representation of the computation is
used: a CUDA kernel function describes the parallel logical tasks. When a kernel is
invoked from the host program, a number of parameters are provided to indicate how
many concurrent instances of the kernel function should be launched and how are they
logically organized. The organization is hierarchical. The set of all these executions is
called a grid. A grid is organized in blocks and every block is organized in a number of
threads. The thread is therefore the basic parallel unit. When mapping a kernel to a spe-
cific GPU, the number of processors and threads per processor may vary. In order to take
advantage of multiple processors, the original kernel blocks are scheduled over multi
processors and each group of threads in a block (typically 32) is run as a warp which
is the minimal work unit on the device. Large tasks are encouraged to be fragmented
over thousands of blocks and threads, while the GPU scheduler provides a lightweight
switch between them. Using a struct data-type, the programmer can choose the num-
ber of blocks and the number of threads per block. Moreover, (s)he can also decide how
to address the blocks (in one or two dimensions) and the threads in the block (in one,
two, or three dimensions). For instance, if the programmer states that dimGrid(8,4)
and dimBlock(2,4,8), then the grid contains in total 8 · 4 · 2 · 4 · 8 = 2048 threads.
Blocks are indexed by (0, 0), (0, 1), . . . , (0, 3), (1, 0), . . . , (7, 3), while each block is
associated to threads indexed by (0, 0, 0), (0, 0, 1), . . . , (1, 3, 7). When a thread starts,
the variables blockIdx.x and blockIdx.y contain its unique block 2D identifiers
while threadIdx.x, threadIdx.y, and threadIdx.z contain its unique thread
3D identifiers. We refer to these these 5 variables as the thread coordinates. Thread co-
ordinates are usually employed to enable the thread to identify its local task and its local

portions of data. For example, matrix operations, histograms and numerical simulations
can be split into independent computations that are mapped to different logical blocks.

From the efficiency standpoint, some caveats exist. In particular, since the compu-
tational model is SIMD (Single Instruction Multiple Data), it is important that each
thread in a warp executes the same branch of execution. Divergent branches (e.g., the
two if’s bodies) are split into different warps, which may reduce the number of concur-
rent threads and affect the overall processor’s occupancy (the ratio of active threads in
a warp). The extreme case happens when each thread performs different operations.

Memories. Usually, host and device are distinct hardware units, with different pur-
poses. Save for very cheap GPU used by some laptops, their memories are physically
distinct. GPU’s memories are connected to CPU’s memory by a system bus, and DMA
transfers can be used under some specific conditions (e.g., use of not paged allocation
in RAM). When a host function calls a kernel function, the data required as input by
the kernel computation need to be placed on the device. Depending on the type of GPU
memory, different techniques are used, but, essentially, there is an implicitly (through
memory mapping) and/or explicitly (through cudaMemcpy) programmed transit of
data between host and device memories. The device memory architecture is rather in-
volved, given the original purpose of the GPU—i.e., a graphical pipeline for image
rendering. It features six different types of memories, with very different properties in
terms of location on chip, caching, read/write access, scope and lifetime: (1) registers,
(2) local memory, (3) shared memory, (4) global memory, (5) constant memory, and (6)
texture memory. In particular registers and local memory have a thread life span and
visibility, while shared memory has a block scope (to facilitate thread cooperation) and
the others are permanent and visible from host and every thread on the device. Constant
and texture memories are the only memories to be read-only and to be cached.

The design of data structures for efficient memory access is the key to achieve
greater speedups, since access time and bandwidth of transfers are strongly affected
by the type of memory and the sequence of access patterns by threads (coalescing).
Only registers and shared memory provide low latency, provided that shared accesses
are either broadcasts (all threads read same location) or conflict-free accesses.From the
practical point of view, the compiler is in charge of mapping variables and arrays to the
registers and the local memory. However, given the limited number of available regis-
ters per thread, an excessive number of variables will lead to variables being allocated
in local memory, which is off-chip and significantly slower (i.e., it has an access speed
comparable to global memory). In the currently available GPUs, the constant memory
is limited to 64KB and shared memory is limited to 48KB per block. In our first tests,
we made use of constant memories for storing the input SAT formula; we quickly aban-
doned this approach, since even the simplest SAT input formulae easily exceeded this
amount of memory. Texture and global memories are the slowest and largest memories
accessible by the device. Textures can be used in case data are accessed in an uncoa-
lesced fashion—since these are cached. Global accesses that are requested by threads
in the same block and that cover an aligned window of 64 Bytes are fetched at once.

In a complex scenario like this, the design of an efficient parallel protocol depends
on the choice of the type of memory and access pattern. For an interesting discussion of
memory issues and data representations in a particular application (sparse matrix-vector

product) the reader is referred to [2]. Just a final pragmatic note: default installation
parameters of GPUs include a timeout for a thread execution (typically, 2 seconds). For
intensive applications, such as those presented in this paper, the option must be disabled
(or, at least, its value must be significantly increased).

3 Davis, Putnam, Logemann, Loveland

We briefly outline the DPLL algorithm [9], here viewed as an algorithm to verify the
satisfiability of a propositional logical formula in conjunctive normal form (CNF). Let
us recall some simple definitions. An atom is a propositional variable (that can assume
value true or false); a literal is an atom p or the negation of an atom (¬p). A clause
is a disjunction of literals `1 ∨ · · · ∨ `k—often expressed simply as the set of its com-
posing literals {`1, . . . , `k}, while a CNF formula is a conjunction of clauses. The goal
is to determine an assignment of Boolean values to (some of) the variables in a CNF
formula Φ such that the formula evaluates to true. If no such assignment exists, then
the result of the search should be false. Fig. 1 provides the pseudo-code of the DPLL
algorithm; the two parameters represent the CNF formula Φ under consideration and
the variable assignment θ computed so far (at the first call, we set θ = [], denoting
the empty assignment). The procedure unit propagation repeatedly looks for a
clause in which all literals but one are instantiated to false. In this case, it selects the
remaining undetermined literal `, and extends the assignment in such a way to make
` (an thus the clause just being considered) true. This extended assignment can be
propagated to the other clauses, possibly triggering further assignment expansions. It
returns the extended substitution θ′ (possibly equal to θ). The procedure ok (resp. ko)
returns true iff for each clause of the (partially instantiated) formula Φ there is a literal
true (resp., there is a clause with all literals false). The procedure select variable
selects a not yet instantiated variable—using some heuristic strategy in making such
choice, in order to guide the search towards a solution. The recursive calls implement
the non-deterministic part of the procedure—known as splitting rule. Given an unas-
signed variable X , the first non-deterministic branch is achieved by adding the assign-
ment of true to X to θ′—this is denoted by θ′[X/true]. If this does not lead to a
solution, then the assignment of false to X is attempted. Trying first true and then
false as in Fig. 1 is another heuristics that can be changed.

The SAT community has developed a standard exchange data format for the en-
coding of problem instances, called the DIMACS format. Each clause is encoded on a
separate line and terminated with 0. Each variable Xi is represented by the number i,
its negative occurrences ¬Xi by −i. The first line stores the number of variables and
clauses. In Fig. 2, we provide a simple example.

4 A GPU implementation of DPLL

We present the main data structures and the overall structure of the CUDA program we
developed. The program runs part of the DPLL computation on the host and part on the
device. In Sect. 7, we provide details about some of the variants we attempted.

Formula and solution representation. A SAT instance is represented by:

DPLL(Φ,θ)
θ′ ← unit propagation(Φ,θ)
if (ok(Φθ′)) return θ′

else if (ko(Φθ′)) return false
else X ← select variable(Φ,θ)

θ′′ ← DPLL(Φ, θ′[X/true])
if (θ′′ 6= false) return θ′′

else return DPLL(Φ, θ′[X/false])

Fig. 1. The pseudo-code for the DPLL procedure

p cnf 4 6
1 -2 3 0
1 4 -3 0
-1 2 3 4 0
2 3 -1 -4 0
-1 2 3 0
-1 2 -3 4 0

formula = 1 -2 3 1 4 -3 -1 2 3 4 2 3 -1 -4 -1 2 3 -1 2 -3 4
clause pointer = 0 3 6 10 14 17 (21)

NV = 4 NL = 21 NC = 6

Fig. 2. A simple SAT instance in the DIMACS format and its low level representation

• a vector formula storing, sequentially, the literals in the clause,
• a vector clause pointer, that stores the pointers to the beginning of the various

clauses (it also stores a reference to the end of formula), and
• three variables NV, NL, and NC, that store the number of variables, of literals, and of

clauses in the formula, respectively.
Fig. 2 shows and example of such representation. The variable assignment is stored in
an array of integers, called vars, of size 1+NV. The value of variable i ∈ {1, . . . ,NV}
is stored in vars[i]; 1 stands for true, 0 for false, and -1 for (still) unassigned.5

The component vars[0] is used as a Boolean flag.
Host code. The main host procedure reads a mode flag and the name of the DI-

MACS file containing the formula to be loaded. A first computation of the DPLL algo-
rithm, implemented recursively in C, runs in the host. If the code is called with mode
flag 0, the computation proceeds in the host until its termination. Otherwise, if the num-
ber of uninstantiated variables after unit propagation does not exceed a threshold (called
MaxV, its typical range is 50–80), a kernel function is called.6 For reducing the amount
of data to be dealt with by the device code, the formula is filtered using the current
partial assignment θ. Namely, all clauses satisfied by θ are deleted and all literals set
to false by θ are removed from the remaining clauses. The filtered formula and an
empty assignment for the remaining variables are passed to the device global memory.

The procedures unit propagation, ok, and ko are defined as particular cases
of the integer function mask prop. Given a (partial) assignment θ stored in the vars
array, mask prop fills an array mask in such as way that for each clause i:
• mask[i] = 0 if clause i is satisfied by θ;

5 Different negative values will be used for unassigned variables in block shared versions of
vars for technical reasons, as explained in Sect. 4—Fig. 4.

6 Unit propagation itself can be parallelized using CUDA. We discuss this in Sect. 7.

• mask[i] = −1 if all literals of the clause i are falsified by θ;
• mask[i] = u if clause i is not yet satisfied by θ, and there are still u > 0 unassigned

literals in it.
Furthermore, mask prop returns −1 if there is a value of i such that mask[i] = −1;
or 0 if for all i mask[i] = 0; or the smallest index of the clause with a minimum
number of uninstantiated literals, otherwise. This information is used for implementing
the select variable function (see Fig. 1). The use of this approach allows us to
introduce a selection strategy that is similar to the well-known first-fail strategy. Clauses
that allow unit propagation are selected first. mask prop is defined in such a way that
it can be used either by the host or by the device (cf. Sect. 4) and it runs in linear time
on the size of the formula. A faster incremental version has been also implemented;
however, additional data structures on CUDA are required to be communicated. In this
paper, we have preferred the simpler version implemented in the same way on the CPU
and on the GPU, that prompts for a parallelization on the GPU (cf. Sect. 7).

Device code. In our implementation, we call the device by specifying B× B blocks,
each addressing T × T threads. Typical values are B = 64 and T = 16. Let us focus, in
what follows, on these two values, for the sake of simplicity.

· · ·
dim3 blocks(B,B), threads(T,T);
· · ·
CUDADPPL<<<blocks,threads>>>(PARMS)
· · ·

In the parameters PARMS we pass all data relative to the filtered formula. Since a kernel
function cannot return a result, we copy back the first cell of the device-version of the
array of variables, and use it as a Boolean flag to signal satisfiability of the SAT instance.
A shared vector block vars is initialized using the (binary expansion of the) block
coordinates, as done by the code in Fig. 3. The first 2 log(B) variables are assigned
deterministically in this way. Note that the code in Fig. 3 shows a simplification of
the actual code, where a unit-propagation phase follows each assignment in order to
deterministically propagate its effects. Then the task is delegated to each thread. We
have tried to exploit at best the access times of the different device memories: The
device computation uses the partial assignment stored in the (fast) array block vars
and the local (slow) array delta vars.

Let us elaborate on this idea. Let us assume that there are 30 unassigned variables,
and let us consider Fig. 4. The first 16 variables are assigned according to the block coor-
dinates (we denote this with 0

1 in the figure). The remaining variables are stored in a pri-
vate thread vector delta vars and the corresponding components of block vars
store pointers to them, as shown in Fig. 4. In particular, if block vars[i] = −j < 0
then the value of variable j, currently handled by the thread, is stored in delta vars[j];
these variables are initially set to −1, to encode the fact that no commitment has been
made regarding their truth value yet. Notice that this representation of partial assign-
ments is exploited by the procedure mask prop mentioned earlier. In fact, in evaluat-
ing a given partial assignment on the input formula, whenever mask prop processes a
variable i occurring in a literal, it first checks the value of block vars[i]. If this value

point=-1; block_vars[0]=0; addr=blockIdx.x;
for(i=1;i<NV;i++){

if (vars[i]>=0) block_vars[i]=vars[i];
else if (count == log(B))

{ addr = blockIdx.y;
block_vars[i] = addr % 2;
addr = addr/2; count++; }

else if (count < 2*log(B))
{ block_vars[i] = addr % 2;
addr = addr/2; count++; }

else { block_vars[i] = point--; }
}

Fig. 3. Deterministic assignments of variables in the shared memory

block vars = 0 0
1

0
1

0
1

0
1
· · · 0

1
-1 -2 · · · -8 -9 · · · -14

indexes : 0 1 2 3 4 · · · 16 17 18 · · · 24 25 · · · 30
delta vars = -1 -1 · · · -1 -1 · · · -1

indexes : 1 2 . . . 8 9 · · · 14
flag block thread ND vars

Fig. 4. Multilevel memory organization for variable assignments.

is positive or zero, then it assigns such a value to the variable (and hence, the proper
value to the literal). Otherwise, it considers the value of delta vars[−block vars[i]].

After these initial assignments of values have been completed, an iterative imple-
mentation of DPLL is called. It starts by calling a device version of mask prop—the
main difference being that this version does not explicitly allocates an array mask as
the host version does. If the formula turns out to be satisfied, the whole assignment
is returned. If a clause is made false by the current partial assignment, then either a
backtracking phase is activated, locally to the single thread, or the thread terminates
with failure, if no other choices are possible. When the formula is not satisfied and
no falsified clause is found, the assignment is extended; if possible, deterministic unit
propagation is applied or, otherwise, the splitting rule is activated. In each of the first
8 applications of the splitting rule, the choices of the values to be assigned to the se-
lected variables are done according to thread’s address. In particular, this is done as
shown in Fig. 3, by using the binary expansion of the value of threadIdx in place
of blockIdx. For the subsequent applications of the splitting rule, the first value at-
tempted is the one that satisfies the first not yet satisfied clause. The other value will be
attempted via backtracking.

Let us close this section with a brief discussion of how the iterative device version
of the DPLL procedure (and the backtracking process) is implemented. Each thread
has a stack, whose maximum size is bounded by the maximum number of variables
sent uninstantiated to the device, minus 2 log(B)—the number of variables assigned by
exploiting the block coordinates. The stack elements contain two fields: a pointer to
delta vars and a value. The value can be a number from 0 to 3, where 0 and 1 mean

that the choice is no (longer) backtrackable, while 2 and 3 mean that a value (either
0 or 1) has been already attempted and the other value (1 or 0, respectively) has not
been tried yet. Notice that this data structure allows us to implement different search
heuristics. In case one adopts the simple strategy that always selects the value 0 first,
the second field of the stack elements can be omitted.

5 Experiments

We tested a large variety of SAT instances taken from classical examples and recent
competitions. We report details about two specific instances: the Pigeon-hole problem
by John Hooker (72 vars, 297 clauses, 648 literals), called hole8 and a permuted SAT
Competition 2002 formula with seed=1856596811, called x1 24 (70 vars, 186 clauses,
556 literals). In these experiments we are not concerned with the search strategy and
heuristics. For this purpose, we implement the same simple variable selection described
in Sect. 4 on both CPU and GPU versions. Clearly, if compared to cutting-edge solvers,
the results reported here are some orders of magnitude slower. Our focus is on ability
to extract parallelism from DPLL (and we need to remember that many of the existing
solvers build on it).

Our aim is to compare only the benefits of a GPU search on a same tree structure.
Therefore, heuristics about tree explorations should have a similar impact on CPU and
GPU. Moreover, we expect that the parallelization of the heuristics on GPUs could be
another key issue in our future work.

We also test the results on various devices, ranging from small scale GPUs up to
top ones. Due to lack of space, we only report results from using a large scale platform.
A remarkable note is that even with less capable devices, speedups are attainable, and
thus these ideas are of an immediate application on standard workstations. Since the
differences between CPU and GPU times are also dependent on the host CPU, the actual
meaning of a relative speedup is a bit fuzzy. We however note that the CPU cores we
used are of standard level for today’s market (e.g., Xeon e5xxx, Intel i7), and thus this
can provide a baseline for reference. The hardware used for the tests is the following:
• Host: a 12 core Xeon e5645, 2.4GHZ, 32GB RAM (used as a single core).
• Device: an NVIDIA Tesla C2075, 448 cores, 1.15GHz, bandwidth 150GB/s.
All the experiments have been conducted averaging the results over repeated runs. In
Fig. 5, we report two rows of charts. Row A shows the results for the hole8 prob-
lem. Each column shows the performance for different MaxV variables: 72 (number of
variables for the problem), 70, and 65. Row B shows the results for the x1 24 prob-
lem. The columns are associated to the following MaxV: 70 (number of variables for
the problem), 68, and 65. In the x-axis are reported the number V of variables non-
deterministically handled by each thread. This relates to the T parameter defined above
as follows: T2 = 2V , since T is the square root of the number of threads that assign
values to the set of variables V . Different lines in the graphs capture different number
V ′ of variables handled by blocks. Again, this relates to the B parameter: B2 = 2V

′
.

Reducing MaxV with respect to the maximum number of variables causes the CPU
to perform a significant amount of work in the top of the search tree. In practice, this
does not introduce much benefit, since the CPU is outperformed by the GPU. However,

parallel unit propagation, with specific conditions (see Sect. 7) can introduce relevant
speedup as well. In such cases, we expect that a balance between the two GPU usages
could find an optimal tradeoff.

The number of threads per block 210 (V = 10) is the maximum supported by the
device; it is interesting to observe that this number does not always lead to the best
performance results. This can be justified by the fact that an increase in the number of
threads (and having many blocks) leads to an increase in the number of uncoalesced
memory accesses and bank conflicts on the shared memory. Given the totally divergent
thread codes, reducing the degree of concurrency represents the only tweaking. Clearly
there is room for optimizations, in particular focusing on the memory access pattern, in
order to bring the execution closer to an SIMD model, more suitable to the GPU. The
number of blocks in use can affect the performance. In this example, a large number of
blocks offers a large pool of tasks to the scheduler. Since many of the running blocks
are suspended for memory accesses, it is important to have a large queue in order to
keep the processors busy.

This first set of benchmark let us conclude that our implementation is capable of
notable speedup w.r.t. CPU version. For hole8 we record an execution time of 14.18s
(V = 6, V ′ = 16, MaxV = 72), that, compared to 71.2s of CPU time, corresponds to a
a speedup greater than 5. For x1 24we record a 26.42s (V = 6, V ′ = 10, MaxV = 70),
that, compared to 1053s of CPU time, almost reaches a 40× speedup.

Tests performed on different GPU platforms produce comparable results; the main
difference is that the best performance results require different choices of parameters.
In particular, we would like to spend a few words on one of the machine used that
represents a typical office desktop configuration:
• Host: Intel core i7, Windows 7, 64 bits, 3.4–3.7GHz
• Device: NVIDIA GeForce GTX 560, 336 cores, 1.62-1.9GHz, bandwidth 128GB/s.
In this case the GPU is not dedicated to GPGPU computing, but it is also used to control
the monitor. For hole8, we measured an average execution time of 4.43s (V = 6,
V ′ = 10, MaxV = 71), that, compared to 34s of CPU time, generates a 7× speedup.
For x1 24, we observe an execution time of 21.76s (V = 8, V ′ = 10, MaxV = 70),
that, compared to 324s of CPU time, gives a 15× speedup.

6 Related work

The literature on parallel SAT solving is extensive. Existing approaches tend to ei-
ther tackle the approach from the point of view of parallelizing the search process—
by dividing the search space of possible variable assignments among processors (e.g.,
[20, 3, 5, 21, 10, 13])—or through the parallelization of other aspects of the resolution
process, such as parallelization of the space of parameters, as in portfolio methods [12].

Parallel exploration of the search space is, in principle, very appealing. The explo-
ration of any subtree of the search space is theoretically independent from other dis-
joint subtrees; thus, one can envision their concurrent explorations without the need for
communication or extensive synchronizations. Techniques for dynamically distributing
parts of the search tree among concurrent SAT solvers have been devised and imple-
mented, e.g., based on guiding paths [21] to describe parts of the search space and dif-

Fig. 5. GPU times with different parameters. Upper row, instance hole8: CPU time is 71.2 seconds. From left to right,
MaxV is 72 (1 GPU call), 70 (3 GPU calls), 65 (8 GPU calls). Lower row, instance x1 24: CPU time is 1053 seconds. From
left to right, MaxV is 70 (1 GPU call), 68 (2 GPU calls), 65 (8 GPU calls). All the times are in seconds.

ferent solutions to support dynamic load balancing (e.g., synchronous broadcasts [4],
master-slave organizations [21]).

Sequential SAT solvers gain competitive performance through the use of techniques
like clause learning [20, 22]—and this prompted researchers to explore techniques for
sharing learned clauses among concurrent computations; restricted forms of sharing of
clauses have been introduced in [3, 6], while more general clause sharing have been
used in [5, 16]. The closest proposal to the one we describe in this paper is the one
presented in [17]—being the only proposal dealing with SAT on GPU platforms. The
authors focus on the fact that, on random instances, high parallelism works better than
good heuristics (or learning). They consider 3SAT instances and use a strategy that leads
to a worst-case complexity of O(1.84n) instead of the standard O(2n) (let us notice,
however, that n increases when converting a formula in the 3SAT format). Basically,
given a clause `1 ∨ `2 ∨ `3 a non-deterministic computation starts with `1 = true,
another with `1 = false and `2 = true and, finally, a third with `1 = `2 = false
and `3 = true. The idea is to use CUDA for recursively parallelize the three tasks,
until the formula becomes (trivially) satisfiable or unsatisfiable. They use a leftmost
strategy for selecting the next clause. The paper tests this approach on 100 satisfiable
random instances, with 75 variables and 325 clauses. The paper lacks of a comparison
w.r.t. a sequential implementation, therefore it is difficult to estimate the speedup they
obtain. We run our parallel code on the same instances and observed execution times
barely notable for all instances.

7 Discussion

In this section we report on some variations of our approach—most of which did not
show any significant performance benefits. One can observe that mapping a search prob-
lem, described by a search tree, on a GPU platform is non-trivial. We identified two

main aspects that deserve to be parallelized: the operations performed on a single node
(e.g., unit propagation) and the parallel exploration of non-deterministic branches of a
specific depth (i.e., a set of independent choices is explored by a specific thread). The
approach described in the paper is predominantly based on subtree parallelism at the
very bottom of the search tree, while the upper part of the tree is handled by the CPU.

Parallelism within a node. We implemented a parallel version of the unit prop-
agation, where the computation of unit variables is performed in parallel. We tested
different worker/task mappings: a thread is in charge of checking a specific clause or it
is in charge of checking a specific literal.

In the first case, the fact that each clause may have a different length causes some
asymmetries in the computation, thus divergent branches may become an issue. We
investigated some sparse matrix algorithms applied to matrix multiplication (cf., [2]).
If the formula is represented as a sparse matrix, the dot product between a row (clause)
and the variables represents the processing of the relevant assignments to variables in
the clause. However, while the dot product simply adds up the contributions provided by
corresponding pairs—our algorithm needs to handle conditional increments, associated
to the value of the variables and the sign of the literals. We tested the Compressed Sparse
Row implementation, which is very similar to the one in use by our program and we did
observe a general poor performance. The main reason is that matrix multiplication is
performed efficiently when a certain number of not null element are involved. Typically
the structure of a clause involves a small subset of variables, which are less than the
number of clauses. Therefore the mapping of a thread to a clause may end up with an
unfavorable setting. Another reason for the poor performance is that the memory access
pattern for reading the formula is rather unstructured and it might be the case that the
same data have to be read by different threads.

Mapping threads to single literals of formula also performs poorly, since the amount
of work for each thread does not compensate the overhead.

In what follows we move towards some ideas to increase the kernel’s work load.
Parallelism on a subtree. In order to generate larger tasks for each thread, we

decided to expand the size of the problem, by considering multiple assignments to the
variables at the same time. This allows us to generate 2k different problems, where k is
the number of variables being checked. On the search tree this equates to the exploration
of a complete subtree of depth k for a fixed set of variables. The bottleneck of this
approach is that the amount of data to be passed back to the host is significant: the
2k results are copied back to host before the next subtree can be explored. Moreover,
the stack must hold at most 2k alternative valid sub-branches. Moreover, this technique
generates many failure branches because unit propagations frequently invalidates the
made choices. Consequently, a large set of threads computes useless branches.

Complete GPU parallelism. This can be achieved with different design patterns.
The base line is that the temporary data reside on the GPU’s memory and there is no
exchange with the CPU unless to communicate the formula and to retrieve the result.
One possibility is to extend the application of the device code presented above, so that
it can handle all the variables involved in the formula. This causes a single GPU call
that handles the whole search tree. We noticed that this choice is optimal for current
implementation. This trivial extension, however, suffers from the fact that the work of

each thread is completely independent (divergent) and many of the accesses to global
and shared memory are not structured. Potentially, there is a good margin for optimiza-
tion, prior a re-organization of the kernel. The idea is to keep a partition of the tree into
subtrees described above. Every single subtree is computed by a kernel and it has to be
interleaved by a kernel that takes care of the (iterative) tree expansion into subtrees and
of the stack/backtracking issues. We tested a model where an iterative version of Depth
First Search is implemented as a kernel based on GPU global memory. Another kernel
takes care of propagation and variable selection strategy. An outer loop on the host con-
trols the correct interleaving of the kernels. Here the not symmetric step is represented
by the stack size that has to store all choice points discovered during the search and the
unit propagated variable that may differ in number across the various branches.

Stacks. The stack that handles the recursion on the device is currently implemented
by arrays that are mapped to global memory by the compiler. We tested a version in
which this memory is mapped to shared memory, so that each thread accesses an inde-
pendent portion. This version has two drawbacks: the first is that the large stack size
and the limited shared memory size restrict the number of threads per block; the second
is that performance is also affected, since the large use of shared memory restricts the
occupancy of the processors.

Large instances. We observed how the actual work for single threads is not suffi-
cient to generate interesting speedups. The idea to increase the work load by exploring
different non-deterministic choices in parallel is promising, but also it appears difficult
to be organized in a complete SIMD approach. Another potential target could be the
parallel handling of extremely large formulae with few variables. While formulae of
this kind are uncommon in typical SAT instances, they could be easily generated when
clause learning techniques are used—as these may lead to redundant clauses that can
easily grow up to millions. In this context, it is interesting to see the capability of a
kernel for the computation of unit propagation. The most likely scenario is to have few
literals per clause versus a large amount of clauses. The formula is partitioned according
to the number of threads of each block and a certain number of blocks (experimentally
the double of the processors available) is created. Each block is in charge of analyzing
a subset of clauses. A block is dedicated to analyze a number of clauses, where each
thread is mapped to each literal appearing in one of these clauses. Then, each block
computes the best candidate through a logarithmic reduction schema and then iterates
the process on the next set of clauses.

We implemented two equivalent versions for CPU and GPU and tested them by
modifying the size of the input. Since we are interested in the performance of the single
kernel and there is no dependence on choice points, we simply appended a formula
an exponential number of times, in order to create some large formula to analyze. We
tested various sizes: the smallest, named 0, with 186 clauses is the x1 24 instance.
The i-th instance is the concatenation of 2i copies of the x1 24 instance. The largest,
named 16, contains 24.3M clauses. We selected 768 threads per block, which was the
optimal value for the system in use (14 cores and capabilities 2.1). In Fig. 6 we depict
the clause size versus the computational times for CPU and GPU (both in logarithmic
scale). It can be seen that almost 10× of speedup is possible. It is interesting to note
that the cases 0–3 contain the typical sizes for hard problems (up to thousands clauses).

Fig. 6. CPU and GPU timings for unit propagation with large instances

However, in this range the GPU performs poorly, mainly because of the overhead of the
GPU invocation and the relatively small task to be performed. This also explains the
poor results achieved when we tried to the parallel version of the unit propagation in
the top part of the tree. Last instance requires 300MB on the video card, and thus it may
be considered one of the largest instances that could be handled by a low cost GPU.

8 Conclusions and Future Work

In this paper, we discussed a preliminary exploration of the potential benefits of using
a GPGPU approach to solve satisfiability (SAT) problems.

Mapping SAT to a GPU platform is not a trivial task. SAT problems require much
less data and much more (non-deterministic) computation with respect to the traditional
image and/or matrix processing for which GPUs are commonly employed. We demon-
strated that, in spite of the different nature of the SAT problem, there are scenarios
where GPUs can significantly enhance the performance of SAT solvers. We explored
and discussed alternative designs, providing two scenarios where the GPU can play a
relevant role. In the first one, parallel and divergent computations are launched. This at-
tempt breaks the classical “rules” of GPU computing. The main reason for this counter-
intuitive result is that the size of data involved and the random access pattern do not
penalize the parallel execution. Moreover, this approach tries to exploit the presence of
hundreds of processors that can perform independent tasks in parallel. The second sce-
nario considers large formulae, typically generated after some form of clause learning,
that can be efficiently processed by a GPU. This large amount of data can exploit all
the benefits from non-divergent threads and structured memory accesses, thus provid-
ing notable and consistent speedups. We also believe that the creation of opportunities
to handle a greater number of learned clauses is also beneficial to the exploration of the
search space, which could potentially lead to a larger pruning of the search tree.

In our future work, we will explore the integration of clause learning techniques in
the GPU code and investigate (i) how it affects the performance of the parallel solver,
and (ii) how it can itself benefit from parallelization. We will also explore scenarios
where GPU-level parallelism interacts with CPU-level parallelism.

References

[1] The International SAT Competitions. http://www.satcompetition.org, 2012.
[2] N. Bell and M. Garland. Efficient Sparse Matrix-Vector Multiplication on CUDA. Techni-

cal Report NVR-2008-004, NVIDIA, 2008.
[3] W. Blochinger, C. Sinz, and W. Kuchlin. Parallel Propositional Satisfiability Checking with

Distributed Dynamic Learning. Parallel Computing, 29(7):969–994, 2003.
[4] M. Bohm and E. Speckenmeyer. A Fast Parallel SAT Solver: Efficient Workload Balancing.

Annals of Mathematics and Artificial Intelligence, 17(2):381–400, 1996.
[5] W. Chrabakh and R. Wolski. GrADSAT: A Parallel SAT Solver for the GRID. Technical

Report 2003-05, University of California Santa Barbara, 2003.
[6] G. Chu and P. Stuckey. Pminisat: A Parallelization of Minisat 2.0. Technical report, SAT-

Race System Descriptions, 2008.
[7] K. Claessen, N. Een, M. Sheeran, N. Sorensson, A. Voronov, and K. Akesson. SAT-Solving

in Practice. Discrete Event Dynamic Systems, 19(4), 2009.
[8] F. Corblin, L. Bordeaux, Y. Hamadi, E. Fanchon, and L. Trilling. A SAT-based Approach

to Decipher Gene Regulatory Networks. In Integrative Post-Genomics, 2007.
[9] M. Davis, G. Logemann, and D. Loveland. A Machine Program for Theorem Proving.

Communications of the ACM, 5(7):394–397, 1962.
[10] L. Gil, P. Flores, and L. Silveira. PMSat: A Parallel Version of Minisat. J. on Satisfiability,

Boolean Modeling and Computationa, 6:71–98, 2008.
[11] E. Giunchiglia, Y. Lierler, and M. Maratea. SAT-Based Answer Set Programming. In AAAI,

pages 61–66, 2004.
[12] Y. Hamadi, S. Jabbour, and L. Sais. ManySAT: a Parallel SAT Solver. JSAT, 6(4):245–262,

2009.
[13] B. Jurkowiak, C. Li, and G. Utard. A Parallelization Scheme Based on Work Stealing for a

Class of SAT Solvers. volume 34, pages 73–101, 2005.
[14] H. Kautz and B. Selman. Planning as Satisfiability. In European Conference on Artificial

Intelligence, pages 359–379, 1992.
[15] D. B. Kirk and W. mei W. Hwu. Programming Massively Parallel Processors. A Hands-on

Approach. Morgan Kaufmann/Elsevier, 2010.
[16] M. Lewis, T. Schubert, and B. Becker. Multithreaded SAT Solving. In 12th Asia and South

Pacific Design Automation Conference. IEEE Computer Society, 2007.
[17] Q. Meyer, F. Schonfeld, M. Stamminger, and R. Wanka. 3-SAT on CUDA: Towards a

massively parallel SAT solver. In W. W. Smari and J. P. McIntire, editors, HPCS, pages
306–313. IEEE, 2010.

[18] M. Prasad, A. Biere, and A. Gupta. A Survey of Recent Advances in SAT-based Formal
Verification. STTT, 7:156–173, 2005.

[19] J. Silva. Search Algorithms for Satisfiability Problems in Combinational Switching Circuits.
PhD thesis, The University of Michigan, 1995.

[20] J. P. M. Silva and K. A. Sakallah. GRASP: A Search Algorithm for Propositional Satisfia-
bility. IEEE Trans. Computers, 48(5):506–521, 1999.

[21] H. Zhang, M. Bonacina, and J. Hsiang. PSato: A Distributed Propositional Prover and its
Application to Quasigroup Problems. J. of Symb. Comput., 21, 1996.

[22] L. Zhang, C. F. Madigan, M. W. Moskewicz, and S. Malik. Efficient Conflict Driven Learn-
ing in Boolean Satisfiability Solver. In ICCAD, pages 279–285, 2001.

