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Abstract. A collection of sets on a ground set Un (Un denotes the set
{1, 2, ..., n}) closed under intersection and containing Un is known as a
Moore family. The set of Moore families for a �xed n is in bijection
with the set of Moore co-families (union-closed families containing the
empty set) denoted Mn. In this paper, we show that the set Mn can be
endowed with the quotient partition associated with some operator h.
This operator h is the main concept underlying a recursive description
of Mn. By this way each class of the partition contains all the families
which have the same image by h. Then we prove some structural results
linking any Moore co-family to its image by h. From these results we
derive an algorithm which computes e�ciently the image by h of any
given Moore co-family.
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