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1 Introduction

Modelling of learning from positive and negative examples has a long-standing
tradition in machine learning, for a brief historical survey see, e.g. [16]. A possible
model in terms of Formal Concept Analysis was described in [10, 15].

The idea of knowing negatively was introduced explicitly by M. Minsky in
[19]. Negative knowledge has a number of beneficial effects in professional con-
texts which are discussed in detailed, e.g. in [12, 19]. The adjectives ‘positive’ and
‘negative’ do not imply a valuation per se. ‘Positive’ knowledge is not good, ad-
vantageous or benign, whereas ‘negative’ knowledge is not bad, disadvantageous
or malign in and of itself.

Both positive and negative knowledge have procedural [19] and declarative
aspects [23]. A procedural aspect of positive and negative knowledge can be para-
phrased as ‘to know what to do’ and ‘to know what not to do’ resp., whereas a
declarative aspect as ‘to know what one knows’ and ‘to know what one does not
know’ resp. In addition, both positive and negative knowledge have two different
degrees of knowing or not-knowing. Positive knowledge is informed (uninformed)
when one is (not) aware of his/her own relevant knowledge. Negative knowledge
is informed (uninformed) when one is (not) aware of his/her own lack of rele-
vant knowledge. Our discussion deals with the declarative aspect of positive and
negative knowledge and informed way of knowing/not-knowing.
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In our approach, first, we consider a class of objects which is modelled as
an abstract set, called the universe of discourse. We assume that a concept is
defined over the universe as a subset. In real life the concepts are usually ex-
pressed in natural language and so their exact definition cannot be given. The
concept approximation is a fundamental problem in artificial intelligence in order
to be able to solve real-world problems [17, 22, 31]. A possible way to approx-
imate concepts is to induce their approximations from available experimental
(observed, measured) data which is also modelled as subsets over the universe
[29–31]. Concepts are generally rough, whereas measurements are always crisp.

It is also assumed that we have some well-defined, decidable features with
which an observed object possesses or not. These features assign crisp subsets
within the universe. In other words, we model an object of interest as a member
of an abstract set, called the universe, and its property ‘it possesses a feature’
as ‘it is the element of a crisp subset of the universe’.

In practice, a concept, of course, cannot be specified completely over the
universe. Instead, two relevant sample groups of objects can be established de-
termined by our currently available and necessarily constrained knowledge: a
group of which members characteristically possess some features concerning the
concept in question, and another group of which members do not substantially
possess the same features. Both groups correspond two crisp subsets of the uni-
verse. They are disjoint, and, in general, the union of them does not add up
to the whole universe. For obvious reasons, the former can be marked with the
adjective positive and called the positive sample set, whereas the latter with
negative and called the negative sample set.

Moreover, in real life, a feature of objects cannot be observed directly as well.
We need tools at our disposal with which we are able to measure one or more
constituents of a feature which are called properties. For instance, let us say that
we observe velocity (feature) of cars (objects). Velocity is a vector quantity with
speed and direction. They are two properties of velocity which can be measured
simultaneously and both of them can be expressed numerically. And so, a car
is modelled as a member of an abstract set, the universe, and its velocity as it
is a member of intersection of two subsets of cars with given speed and given
direction (tools) which were measured at the same time.

It is assumed that we are able to judge easily and unambiguously whether
an object possesses a property ascertained by a tool or not. It is expected that
tools can be used simply and quickly. The objects classified by a tool can be
modelled as a crisp subset of the universe. With a slight abuse of terminology,
this subset is also simply called tool.

Different tools form different subsets, but they are not necessarily disjoint.
Intersections of not disjoint tools are also viewed as tools. The complement of a
tool is not necessarily a tool at the same time. In practice, there are properties
which can be measured but their counterparts cannot. For instance, a given
disease can be diagnosed but the health cannot be measured. These significant
facts confirm the partial nature of our approach.
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Let us distinguish two types of tools: positive and negative ones. It is a natural
assumption that a subset cannot be positive and negative tool simultaneously.

To manage the problem outlined above we need an approximation framework.
It may be built on the rough set theory because it provides a powerful foundation
to reveal and discover important structures in data and classify complex objects
[27, 28]. The rough set theory was introduced by the Polish mathematician, Z.
Pawlak in the early 1980s [24, 25]. It can be seen as a new mathematical approach
to vagueness [14]. According to Pawlak’s idea, the vagueness of a subset within
the universe U is defined by the difference of its upper and lower approximations
with respect to a partition of U . Using partitions, however, is a very strict
requirement. Our starting point is an arbitrary family of subsets of U which
does not cover the universe necessarily. The lower and upper approximations
are straightforward point-free generalizations of Pawlak’s ones [2–6]. We apply
them to build a set theoretic tool-based partial approximation framework in which
positive features and their negative counterparts of any clump of observed objects
can be approximated simultaneously.

The rest of the paper is organized as follows. Section 2 sums up the most im-
portant features of rough set theory and partial approximation spaces. Classical
rough set theory and formal concept analysis use similar structures to represent
information which is briefly described in Section 3. In Section 4 we will propose a
tool-based set theoretical framework for concept approximation based on partial
approximation spaces. Its main notions are illustrated in Section 5. Finally, in
Section 6, we conclude the paper.

2 Partial Approximation of Sets

First, we summarize the most important concepts and properties of rough set
theory [13, 25]. Let U be a nonempty set and ε be an equivalence relation on U .
Let U/ε denote the partition of U generated by ε. Members of the partition are
called ε-elementary sets. X ⊆ U is ε-definable, if it is a union of ε-elementary
sets, otherwise ε-undefinable. By definition, the empty set is considered to be an
ε-definable set.

The pair 〈U, ε〉 is called a Pawlakean approximation space. The lower and
upper ε-approximations of X ⊆ U can be defined as follows.

The lower ε-approximation of X is3

ε(X) =
⋃
{Y | Y ∈ U/ε, Y ⊆ X},

and the upper ε-approximation of X is

ε(X) =
⋃
{Y | Y ∈ U/ε, Y ∩X 6= ∅}.

The set Bε(X) = ε(X)\ε(X) is the ε-boundary of X. X is ε-crisp, if Bε(X) =
∅, otherwise X is ε-rough.

3 If A ⊆ 2U , we define
⋃

A = {x | ∃A ∈ A(x ∈ A)}, and
⋂

A = {x | ∀A ∈ A(x ∈ A)}.
If A is an empty family of sets,

⋃
∅ = ∅ and

⋂
∅ = U .
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Let DU/ε denote the family of ε-definable subsets of U . Clearly, ε(X), ε(X) ∈
DU/ε, and the maps ε, ε : 2U → DU/ε are monotone, total and many-to-one. It
can easily be seen ([25], Proposition 2.2, points 1, 9, 10) that the map ε is
contractive and ε is extensive, i.e. ∀X ∈ 2U (ε(X) ⊆ X ⊆ ε(X)). In other words,
X is bounded by its lower and upper approximations.

Now, let us turn to the theory of partial approximation of sets [2, 4, 5]. Its
most fundamental notion is the base system.

Definition 1. Let B ⊆ 2U be a nonempty family of nonempty subsets of U .
B is called the base system, its members are the B-sets.

An extension of the base system is specified by the next definition.

Definition 2. A nonempty subset X ⊆ U is B-definable if there exists a family
of sets D ⊆ B in such a way that X =

⋃
D, otherwise X is B-undefinable.

The empty set is considered to be a B-definable set.
Let DB denote the family of B-definable sets of U .

Note that neither the base system B nor DB covers the universe necessarily.
Let us define the lower and upper approximations of sets based on partial

covering of the universe.

Definition 3. Let B ⊆ 2U be a base system and X be any subset of U .
The lower B-approximation of X (Fig. 1) is

C[B(X) =
⋃
{Y | Y ∈ B, Y ∩X = Y },

the upper B-approximation of X (Fig. 2) is

C]B(X) =
⋃
{Y | Y ∈ B, Y ∩X 6= ∅}.

Remark 1. In Definition 3, the members of the base system may be seen as the
elements of the lattice 2U , and instead of set theoretic operations may be used
lattice operations. In this way, point-free generalizations of Pawlakean lower and
upper approximations can be obtained.

Clearly, C[B(X),C]B(X) ∈ DB, and the maps C[B,C]B : 2U → DB are total,
monotone and in general many-to-one.

Fig. 1. Lower Fig. 2. Upper Fig. 3. Lower and

approximation approximation upper approximations
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Proposition 1 ([6], Proposition 4.8). Let B ⊆ 2U be a base system. Then

1. ∀X ∈ 2U (C[B(X) ⊆ C]B(X));
2. ∀X ∈ 2U (C[B(X) ⊆ X)—that is, C[B is contractive;

3. ∀X ∈ 2U (X ⊆ C]B(X)) if and only if
⋃
B = U—that is, C]B is extensive if

and only if B covers the universe.

Using the previous notations, the notion of the partial approximation space
can be introduced.

Definition 4. The ordered quadruple 〈U,DB,C[B,C]B〉 is called the (weak) par-
tial B-approximation space.

Let (P,≤P ) and (Q,≤Q) be two posets.

Definition 5. The pair of maps f : P → Q and g : Q → P forms a (regular)
Galois connection between P and Q, in notation G(P, f, g,Q), if

∀p ∈ P ∀q ∈ Q (f(p) ≤Q q ⇔ p ≤P g(q)).

If P = Q, G(P, f, g, P ) is called a Galois connection on P .

Remark 2. Here we adopted the definition of Galois connection in which the
maps are monotone. It is also called monotone or covariant form. For more
details on Galois connections, see, e.g. [8]. Note that since Galois connections
are not necessarily symmetric, the order of the maps is important.

It is well known fact ([13], Proposition 138) that upper and lower ε-approx-
imations form a Galois connection G(2U , ε, ε, 2U ) on (2U ,⊆). Next theorem
shows the conditions under which upper and lower B-approximations also form
a Galois connection.

Theorem 1 ([6], Theorem 4.14). Let 〈U,B,C[B,C]B〉 be a partial B-approxi-
mation space. The upper and lower B-approximations form a Galois connection
G(2U ,C]B,C[B, 2U ) on (2U ,⊆) if and only if the base system B is a partition of
U .

According to Proposition 1, point 3, X ⊆ C]B(X) if and only if the base
system B covers the universe.

Definition 6. A subset X ⊆ U is B-approximatable if X ⊆ C]B(X), otherwise
it is said that X has a B-approximation gap.

A B-approximation gap may be interpreted so that our knowledge about the
universe encoded in the base system is incomplete and not enough to approxi-
mate X.

Definition 7. Let 〈2U ,DB,C[B,C]B〉 be a partial B-approximation space, and
X be any subset of U .

The partial upper B-approximation of X is

∂C]B(X) =

{
C]B(X), if X is B-approximatable;
undefined, otherwise.

(1)
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There exists at least one nonempty B ∈ B B-set by Definition 2. Then
B ⊆ C]B(B) according to Definition 3. Hence, ∂C]B is defined on at least one
nonempty subset of U .

Notice that C[B(X) ⊆ X ⊆ ∂C]B(X) holds provided X is B-approximatable.
As Theorem 1 shows, the upper and lower B-approximations form a Galois

connection on (2U ,⊆) if and only if the base system B is a partition of U . The
question naturally arises whether the Galois connection could be generalized
so that the maps ∂C]B and C[B may form a Galois connection in any sense.
Moreover, if the answer is yes, then what conditions have to be fulfilled by a
partial B-approximation space so that ∂C]B and C[B form a Galois connection of

this special type. Recall that C[B is a total and ∂C]B is a partial map on 2U .
To answer this question, first of all, we need a suitable modified notion of

Galois connections.

Definition 8 ([18], Definition 2.2.2). The pair of maps f : P → Q and
g : Q → P forms a partial Galois connection between P and Q, denoted by
∂G(P, ∂f, g,Q), if

1. f : P → Q is a monotone partial map,
2. g : Q→ P is a monotone total map,
3. f(g(q)) exists for all q ∈ Q, and
4. ∀p ∈ P and ∀q ∈ Q such that f(p) is defined, f(p) ≤Q q ⇔ p ≤P g(q).

Remark 3. In [18], A. Miné actually introduced the concept of F-partial Galois
connection ∂G(P, ∂f, g,Q) between the concrete domain P and the abstract
domain Q, where F is a set of concrete operators. We apply this notion in the
simplest form when P = Q = 2U and F = ∅. It is allowed by Miné’s definition.

Theorem 2 ([6], Theorem 4.22). Let 〈U,B,C[B,C]B〉 be a partial B-approxi-
mation space.

The partial upper B-approximation and the lower B-approximation form a
partial Galois connection ∂G(2U , ∂C]B,C[B, 2U ) on (2U ,⊆) if and only if the B-
sets are pairwise disjoint.

A natural question is how we can form a base system from an arbitrary one
of which members are pairwise disjoint. In practice, this problem can be reduced
to finite base systems. A possible way to construct such a base system is the
following.

First, let us form an intersection structure from an arbitrary finite base
system. Formally, a nonempty family S ⊆ 2U is an intersection structure if
∀S′( 6= ∅) ⊆ S (

⋂
S′ ∈ S), i.e. it is closed under intersection but does not

contain U necessarily [7].
Let us take an arbitrary finite base system B and create its intersection

structure IS(B) as the smallest set which satisfies the following two properties:

1. B ⊆ IS(B).
2. If B′ ⊆ IS(B), then

⋂
B′ ∈ IS(B).
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Having given the intersection structure IS(B), we can create a family of sets
ISΠ(B) of which members are pairwise disjoint. ISΠ(B) is the smallest family
of sets which satisfies the following property:

If u ∈ U and B′ = {B : B ∈ B ∧ u ∈ B}, then
⋂

B′ ∈ ISΠ(B).

3 Rough Set Theory and Formal Concept Analysis

Let G and M denote a set of objects and a finite set of attributes, respectively.
Note that the formal concept analysis allows that G and M to be empty sets,
but the rough set theory does not.

3.1 Information Systems

First, we reformulate the rough set theory [9, 24]. Let S = 〈G,M, Vm∈M , f〉 be
an information system, where G and M as before, Vm is a nonempty set of values
of attribute m ∈M , and f : G×M → V =

⋃
m∈M Vm is an information function

with ∀g ∈ G∀m ∈ M (f(g,m) ∈ Vm). Informally, f(g,m) represents the value
which object g takes at attribute m.

The information system is often represented by a table, as shown in Table 1.
It is an information table containing a shortened student grade history from an
information technology course held for hospital nurses at the Faculty of Health,
University of Debrecen. It contains 20 students and their results in three home-
work assignments, and one final examination.

Table 1. Information system Table 2. Information system

of a shortened student grade history of a shortened student grade history

(complete) (partial)

Student Hw1 Hw2 Hw3

Final 

exam

S 1 1 1 1 1

S 2 1 1 2 2

S 3 1 1 1 1

S 4 1 2 1 1

S 5 1 1 1 1

S 6 1 1 2 1

S 7 4 1 3 1

S 8 2 4 1 2

S 9 1 3 1 2

S 10 1 1 3 1

S 11 2 1 1 2

S 12 1 1 1 1

S 13 1 2 1 1

S 14 1 1 2 3

S 15 4 3 3 4

S 16 2 1 1 4

S 17 2 2 2 4

S 18 4 4 3 3

S 19 4 3 3 2

S 20 4 4 3 4

Student Hw1 Hw2 Hw3

Final 

exam

S 1 1 1 1 1

S 2 1 1 2 2

S 3 1 1 1 1

S 4 2 1

S 5 1 1 1 1

S 6 1 1 2 1

S 7 1 3 1

S 8 2 4 1 2

S 9 1 3 1 2

S 10 1 1 3 1

S 11 2 1 1 2

S 12 1 1 1 1

S 13 1 2 1 1

S 14 1 1 2 3

S 15 4 3 3 4

S 16 2 1 1 4

S 17 4

S 18 4 4 3 3

S 19 4 3 3 2

S 20 4 4 3 4
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With each N ⊆M we associate an equivalence relation EN ⊆ G×G by

(g1, g2) ∈ EN if ∀n ∈ N (f(g1, n) = f(g2, n)).

If g ∈ G, then [g]EN
is the equivalence class of EN containing g. Let G/N denote

the set of equivalence classes generated by EN .
A concept X ⊆ G is EN -definable or EN -exact if X is a union of some

equivalence classes, otherwise X is EN -undefinable or EN -inexact.
Lower and upper EN -approximations of X are:

EN (X) =
⋃
{[g]EN

∈ G/N | [g]EN
⊆ X},

EN (X) =
⋃
{[g]EN

∈ G/N | [g]EN
∩X 6= ∅}.

3.2 Formal Context

In formal concept analysis a formal context is a triple 〈G,M,R〉 [11], where G
and M as above and R ⊆ G×M is a binary relation. Choosing

∀m ∈M (Vm = {0, 1}) and f(g,m) =

{
1, if (g,m) ∈ R;
0, otherwise

,

we may transform information systems into formal contexts. For instance, Table
3 shows a formal context representation of the same example shown in Table 1.

Table 3. Formal context Table 4. Incomplete formal context

of a shortened student grade history of a shortened student grade history

Final 

Student 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 exam

S 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

S 2 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 2

S 3 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

S 4 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1

S 5 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

S 6 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1

S 7 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1

S 8 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 2

S 9 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 2

S 10 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1

S 11 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 2

S 12 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

S 13 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1

S 14 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 3

S 15 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 4

S 16 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 4

S 17 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 4

S 18 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 3

S 19 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 2

S20 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 4

Homework1 Homework2 Homework3

S20 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 4

Final 

Student 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 exam

S 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

S 2 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 2

S 3      1 0 0 0 0      1

S 4 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1

S 5 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

S 6 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1

S 7      1 0 0 0 0 0 0 1 0 0 1

S 8 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 2

S 9 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 2

S 10 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1

S 11 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 2

S 12 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

S 13 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1

S 14 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 3

S 15 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 4

S 16 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 4

S 17                4

S 18 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 3

S 19 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 2

S 20 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 4

Homework3Homework1 Homework2

S 20 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 4
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Given the formal context 〈G,M,R〉 we define

AB = {m ∈M | ∀g ∈ A ((g,m) ∈ R)}, for A ⊆ G,

BC = {g ∈ G | ∀m ∈ B((g,m) ∈ R)}, for B ⊆M,

called the polars of A, B, respectively [26].
Informally, AB is the set of attributes common to all the objects in A, BC is

the set of all objects which possess all of the attributes in B.
Given A ⊆ G and B ⊆ M we have A× B ⊆ R ⇔ A ⊆ BC ⇔ AB ⊇ B. The

pair (A,B) is called a formal concept if

A = BC and AB = B.

Formal concepts are usually ordered by inclusion on the first co-ordinate
and/or reverse inclusion on the second:

(A1, B1) � (A2, B2)⇔ A1 ⊆ A2 and B1 ⊇ B2 ⇔ A1 ⊆ A2 ⇔ B1 ⊇ B2.

Formal concepts with this ordering form a concept hierarchy for the context
〈G,M,R〉 and denoted by B(G,M,R). The fundamental theorem of formal con-
cept analysis states that B(G,M,R) with the ordering � is a complete lattice
called the concept lattice [11].

4 A Tool-Based Set Theoretic Approximation Framework

Let U be any nonempty set. Let A+, A− ⊆ U be two nonempty subsets of U in
such a way that A+ ∩ A− = ∅. A+ and A− are called the positive and negative
reference set, respectively. The adjectives positive and negative claim nothing
else but that the sets A+ and A− are well separated.

In general, the constraint A+ ∩ A− = ∅ is the only requirement for A+ and
A−. Of course, additional relations between them may be supposed.

Furthermore, let T+ and T− ⊆ 2U be two nonempty finite families of subsets
of U . The members of T+ are called positive or T+-tools, whereas the members
of T− are called negative or T−-tools.

Requirements for positive and negatives tools are the following:

(T1) For each subset T+ ∈ T+ (resp., T− ∈ T−) it is easy to decide whether
an element of U belongs to T+ (resp., T−) or not.

(T2) Sets in T+ are not necessarily pairwise disjoint, neither are those in T−.
(T3) T+ ∩ T− = ∅.
(T4) Neither

⋃
T+ nor

⋃
T− covers U necessarily.

(T5) It is assumed that

∀T+
1 , T+

2 ∈ T+ (T+
1 ∩ T+

2 ∈ T+), and ∀T−1 , T−2 ∈ T− (T−1 ∩ T−2 ∈ T−),

i.e. the T+ and T− are closed under intersection.
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Positive (resp., negative) tools provide an opportunity to locate or approxi-
mate the positive (resp., negative) reference set. Positive and negative tools
together also yield useful information about the reference sets. To do this, we
can use the following three partial approximation spaces relaying on T+ and T−:

〈U,DT+ ,C[T+ ,C
]
T+〉, 〈U,DT− ,C[T− ,C

]
T−〉, 〈U,DT+∪T− ,C[T+∪T− ,C

]
T+∪T−〉.

Within these spaces, any clump of observed objects can be approximated
with the help of the lower and upper T+(T−-,T+ ∪ T−-)-approximations.

5 An Illustrative Example

To illustrate our framework let us see a simple example. We want to approxi-
mately estimate the achievement of students and their results in the final ex-
amination in higher education [20, 21]. We have at our disposal an information
table (Table 5) containing the student grade history (5 = excellent, 4 = good, 3
= fair, 2 = pass, 1 = fail).

Table 5. Information table with student grade history

Student Hw1 Hw2 Hw3

Final 

exam

S 1 1 1 1 1

S 2 1 1 2 2

S 3 1 1 1 1

S 4 1 2 1 1

S 5 1 1 1 1

S 6 1 1 2 1

S 7 4 1 3 1

S 8 2 4 1 2

S 9 1 3 1 2

S 10 1 1 3 1

S 11 2 1 1 2

S 12 1 1 1 1

S 13 1 2 1 1

S 14 1 1 2 3

S 15 4 3 3 4

S 16 2 1 1 4

S 17 2 2 2 4

S 18 4 4 3 3

S 19 4 3 3 2

S 20 4 4 3 4

Positive tools:

T+
Hw1=4 = {S7, S15, S18, S19, S20}

T+
Hw2=4 = {S8, S18, S20}

T+
Hw1=4∧Hw2=4 = {S18, S20}

Negative tools:

T−Hw1=1 =

{S1, S2, S3, S4, S5, S6, S9, S10, S12, S13, S14}

T−Hw2=1 =

{S1, S2, S3, S5, S6, S7, S10, S11, S12, S14, S16}

T−Hw3=1 =

{S1, S3, S4, S5, S8, S9, S11, S12, S13, S16}

T−Hw1=1∧Hw2=1 =

{S1, S2, S3, S5, S6, S10, S12, S14}

T−Hw1=1∧Hw3=1 = {S1, S3, S4, S5, S9, S12, S13}

T−Hw1=2∧Hw3=1 = {S1, S3, S5, S11, S12, S16}

T−Hw1=1∧Hw2=1∧Hw3=1 = {S1, S3, S5, S12}

Of course, there is no way to accurately measure the achievement of students
and their success or failure on the final exam. Moreover, students cannot exactly
appreciate ‘what they know’ or ‘what they do not know’. However, with the
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apparatus of partial approximation spaces, we can analyze student grade history
contained in Table 5 in order to understand how the results in assignments
approximately relate to success or failure on the final exam.

For the sake of simplicity, students’ success and failure on homework assign-
ments or the final exam are measured by grade 4 and grade 1, respectively. Based
on these prerequisites, the positive tools (Fig. 4) and negative tools (Fig. 5) are
the following (see also Table 5):

T+ = {T+
Hw1=4, T

+
Hw2=4, T

+
Hw1=4∧Hw2=4},

T− = {T−Hw1=1, T
−
Hw2=1, T

−
Hw3=1, T

−
Hw1=1∧Hw2=1, T

−
Hw1=1∧Hw3=1,

T−Hw1=2∧Hw3=1, T
−
Hw1=1∧Hw2=1∧Hw3=1}

U

S8

T
+

Hw2=4

S18

S20

T
+

Hw1=4

S19
S15

S17

S16

S1 S3

S12S11

S5

S14

S6

S10

S2

S7 S4

S9

S13

U

S1

S14

S3 S12

S4
S13S9

S6

S10

S2

S7

S16S11

T
¡

Hw1=1

S5

T
¡

Hw2=1

T
¡

Hw3=1

S15S17 S18 S19 S20

S8

Fig. 4. Positive tools (homework = 4). Fig. 5. Negative tools (homework = 1).
〈U,DT+ ,C[

T+ ,C
]

T+〉 partial 〈U,DT− ,C[
T− ,C]

T−〉 partial

approximation space approximation space

Students who have successful final exams can be evaluated with both positive
and negative tools (Fig. 6, Fig. 7):

– C[T+(XFinal exam=4) = ∅
Informally: there is no combination of successful homework in which case
the final exam surely succeeds.

– C]T+(XFinal exam=4) = T+
Hw1=4 ∪ T+

Hw2=4 ∪ T+
Hw1=4∧Hw2=4

Informally: if one of the Homework 1, 2 or both of the two succeed, the final
exam possibly succeeds.

– C[T−(XFinal exam=4) = ∅
Informally: there is no combination of failed homework in which case the
final exam surely succeeds.

– C]T−(XFinal exam=4) = T−Hw3=1

Informally: if the Homework 3 fails, the final exam may succeed.
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U
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T
+

Hw2=4

S18

S20

T
+

Hw1=4

S19
S15

S17

S16

S1 S3

S12S11

S5

S14

S6

S10

S2

S7 S4

S9

XFinal exam=4

S13

U

S1

S14

S3 S12

S4
S13S9

S6

S10

S2

S7

S16S11

T
¡

Hw1=1

S5

T
¡

Hw2=1

T
¡

Hw3=1

S15

S17

S18 S19

S20

S8

XFinal exam=4

Fig. 6. Evaluation of successful final Fig. 7. Evaluation of successful final

exams with positive tools exams with negative tools

Students who have failed their final exams can also be evaluated with both
positive and negative tools (Fig. 8, Fig. 9):

– C[T+(XFinal exam=1) = ∅
Informally: there is no combination of successful homework in which case
the final exam surely fails.

– C]T+(XFinal exam=1) = T+
Hw1=4

Informally: if the only Homework 1 succeeds, the final exam possibly fails
(because, e.g., Homework 1 is the simplest part of the course).

– C[T−(XFinal exam=1) = T−Hw1=1∧Hw2=1∧Hw3=1

Informally: If all homework fail, the final exam surely fails.
– C]T−(XFinal exam=1) =

⋃
T−

Informally: if at least one homework fails, the final exam possibly fails.
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T
+

Hw2=4

S18

S20

T
+

Hw1=4

S19

S15

S17

S16S1 S3

S12

S11

S5

S14

S6

S10
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S7

S4

S9

XFinal exam=1

S13

U

S1

S14

S3 S12

S4
S13S9

S6

S10

S2

S7

S16S11

T
¡

Hw1=1

S5

T
¡

Hw2=1

T
¡

Hw3=1

S15S17 S18 S19 S20

S8

XFinal exam=1

Fig. 8. Evaluation of failed final exams Fig. 9. Evaluation of failed final exams

with positive tools with negative tools
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Evaluations can also be carried out over positive and negative tools together:

– C[T+∪T−(XFinal exam=4) = ∅ (see Fig. 10) informally means that there is no
combination of successful or failed homework in which case the final exam
surely succeeds.

– C]T+∪T−(XFinal exam=4) (see Fig. 10) informally means that if one of the
Homework 1, 2 or both of the two succeed, in addition, even if one of the
Homework 1, 3 or both of the two fail, then the final exam possibly succeed.

– C[T+∪T−(XFinal exam=1) (see Fig. 11) informally means that if at least one
homework fails, the final exam surely fails.

– C]T+∪T−(XFinal exam=1) (see Fig. 11) informally means that if at least one
homework fails, the final exam possibly fails even if the Homework 1 succeeds.
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S8

T
+

Hw2=4

S18

S20

T
+

Hw1=4

S19
S15

S17

T
¡

Hw2=1
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¡

Hw3=1

S16

S1 S3
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S14

S6

S10

S2

S7 S4

S9

XFinal exam=4

S13

C[T+∪T−(XFinal exam=4) = ∅

C]T+∪T−(XFinal exam=4)

= T+
Hw1=4 ∪ T+

Hw2=4

∪T+
Hw1=4∧Hw2=4

∪T−Hw2=1 ∪ T−Hw3=1

∪T−Hw2=1∧Hw3=1

Fig. 10. Evaluation of successful final exams with positive and negative tools
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T¡Hw3=1

S15S17 S18 S19 S20

XFinal exam=1

T+
Hw1=4

S8

C[T+∪T−(XFinal exam=1)

= T−Hw1=1∧Hw2=1∧Hw3=1

C]T+∪T−(XFinal exam=1)

= T−Hw1=1 ∪ T−Hw2=1 ∪ T−Hw3=1

∪T−Hw1=1∧Hw2=1
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∪T−Hw2=1∧Hw3=1

∪T−Hw1=1∧Hw2=1∧Hw3=1

∪T+
Hw1=4

Fig. 11. Evaluation of failed final exams with positive and negative tools



66 Z. Csajbók et al.

6 Conclusion

We have presented in this paper a tool-based set theoretic framework for concept
approximation relying on partial approximation spaces. Positive features and
their substantially negative features of observed objects can simultaneously be
approximated with the help of this framework.

We have drawn up a simplified example to demonstrate our approach. We
have analyzed a student grade history and we have been able to evaluate the
students’ achievement, exploring ‘what they know’ and/or ‘what they do not
know’, and understand how the results in homework assignments approximately
relate to success or failure on the final exam. Of course, a more subtle definition
of the notions of ‘success’ and ‘failure’ could result in a more subtle evaluation.
A refined evaluation process can form a basis for quality insurance in higher
education properly building in the hierarchy of quality management.
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