
Dynamic Visualizations for Multi-Domain Search Results

Alessandro Bozzon, Luca Cioria, Piero Fraternali, Maristella Matera
Dipartimento di Elettronica e Informazione, Politecnico di Milano

P.zza L. da Vinci, 32 - 20133 - Milano
[name.surname]@polimi.it

ABSTRACT
Search systems are becoming increasingly sophisticated in
their capacity of building results that are not mere lists of
documents but articulated sets of concepts retrieved from
different domains. As the search result sets exhibit more
structure, techniques are required to visualize the retrieved
objects in a way that facilitates the immediate understand-
ing of their properties and relationships. This paper inves-
tigates the use of models to represent both result sets and
visualization spaces, and of model-to-model transformations
to dynamically suggest an optimized result visualization for
multi-domain search.

1. INTRODUCTION
Past years have seen an evolution in the way search en-

gines, and more generally information seeking applications,
deliver responses to user’s information needs. Mainstream
search engines are now capable of recognizing quite a large
amount of concepts in the input keywords (people, cities,
events, etc.) and provide a customized representation of
results, e.g., by including maps, photographs, videos, and
concept-dependent data, like tourism information for a re-
trieved city. A more sophisticated approach to result visu-
alization is however provided by vertical search applications
(e.g., Wanderfly - www.wanderfly.com), which exploit do-
main knowledge to optimize the display of retrieved results.

Also due to the always increasing availability of public
Web data sources in different domains, we expect a diffu-
sion of high quality information retrieval systems and an
increased interest for search-based applications also in B2B
and B2C applications, as a primary means for locating rele-
vant documents and/or combinations of objects of interest.
These factors motivate the demand for appropriate devel-
opment methods, supporting the construction of effective
result presentation interfaces [9]. Like in horizontal search
engines, one would like to achieve a flexible and dynamic
assembly of the result layout: the kind and amount of infor-
mation should vary depending on the concepts found in the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. This article was presented at:
WORKSHOP NAME.
Copyright 2011.

result set. As in vertical search applications, one would like
to fine tune the result display to the type of objects retrieved,
to optimize the immediate readability of the result page.
This may require varying the visualization technique quite
radically, e.g., using maps to chart multiple geo-referenced
objects, time lines to convey temporal series, and ad hoc
widgets for multidimensional data.

This paper addresses the problem of automating the con-
struction of result visualization interfaces for multi-domain
search tasks, where results are ranked combinations of ob-
jects with typed attributes and relationships. In [3] we al-
ready clarified our perspective on visualizations for multi-
domain search tasks, and discussed how the dynamic con-
struction of search results visualizations can be “reduced”
to the identification of a model-to-model mapping between a
data set model and a visualization space model. In this paper
we illustrate in details the models and the mapping process
that exploits static and dynamic result properties (e.g., data
types and attribute value distribution) to dynamically de-
termine the visualization to use for result presentation.

The paper is organized as follows: Section 2 overviews the
related work; Section 3 introduces the models of the result
data set space and the visualization space, and describes the
mapping rules between such models for choosing the most
appropriate visualizations at runtime; Section 4 illustrates
the mapping on a running example; Section 5 briefly shows
how the described mapping is implemented within an archi-
tecture for multi-domain search applications; finally, Section
6 outlines the future work.

2. RELATED WORK
New generation search engines are moving towards the col-

lection and integration of heterogeneous data sources. Kos-
mix [11] is an example of general-purpose topic discovery
engine. It offers one-page information summaries about a
topic, retrieved through calls to Web services that extract
information from deep Web data sources. The schema of
each topic is a complex record type, which not only com-
prises typed properties of the entity but also associations to
other entities representing related topics.

Data visualization has a long standing tradition, which
initially focused on the analysis of alternative visualization
techniques for various categories of data [4]. Classic works
like [10] [12] offered guidance in selecting the most appropri-
ate visualization techniques for different types of data (e.g.,
1-, 2-, 3-dimensional data, temporal and multi-dimensional
data, and tree and network data). Later works (e.g., [6]
[13]) explored the underlying conceptual structure of data-

Marco Brambilla
Text Box
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.This paper was presented at 
Very Large Data Search (VLDS) 2011.
Copyright 2011.



Figure 1: SeCo Architecture

oriented visualizations, highlighting a common framework
of data visualization strategies, giving a deeper rationale to
the taxonomies of visualization techniques.

Much work has also addressed the automatic generation of
presentations. The pioneer approach proposed by Mackinlay
[8], and other successive works (e.g., [7] [4]), exploit data
characterization and propose rule-based approaches to map
data types to visual elements. The common aim of such
works is to automatically derive “adequate” visualizations
[4], where adequate means complete, i.e., the user perceive
from it all the information enclosed within the original data,
and correct, i.e., no other information is perceived.

Our work capitalizes on the results achieved in the re-
search fields above mentioned. As we will illustrate in the
following sections, we apply such results to the dynamic vi-
sualization of multi-domain search results [3], trying to ad-
dress the issues that characterize this specific context.

3. DYNAMIC VISUALIZATION PROCESS
The problem of multi-domain search is defined as the com-

putation and presentation of results to queries over multi-
ple Web data sources that return (possibly ranked) lists of
objects. A typical multi-domain query, which we will use
throughout the paper as running case, is: Find combina-
tions of hospitals and doctors specialized in the treatment of
a given disease, ranked based on the rating of the hospital
and on the scientific impact of the doctor.

Answering multi-domain queries requires a processing ar-
chitecture like the one implemented in the Search Comput-
ing (SeCo) Project [5], and illustrated in Figure 1. The
server tier comprises a Service Repository, where external
data sources can be wrapped and registered using a variety
of technologies, and a Query Processor, where the orchestra-
tor invokes the analyzer to decompose the query into service
calls, and then sends an execution plan to the runtime en-
gine that manages the invocation of services and the assem-
bly of results efficiently. In the client tier, the Liquid Query
Graphical User Interface (LQ GUI) [2] allows the user to
formulate queries instantiating pre-registered search appli-
cation skeletons, that declare the available data sources and
the connection paths joining a source to another one.

The currently implemented LQ GUI has a fixed set of data
visualizations (table, atom view, and maps).

The work described in this paper aims at equipping the
result presentation module highlighted in Figure 1 with the
capability of automatically suggesting visualizations to the

Figure 2: Overview of the visualization process

user, based on the features of the current result set and on
the available visualization templates; both aspects are en-
coded as models. The idea is that when the user submits
the initial query, the results are analyzed on the fly and
the proper visualization is selected and adapted to the char-
acteristics of the retrieved objects (e.g., since hospitals are
geo-referenced, results are displayed on a map). If the user
interacts with the query, then the system analyzes the up-
dated result set and suggests alternative visualizations, (e.g.,
a time-line, if the user chooses to visualize the doctors’ dates
of availability).

3.1 Overview of the process
The dynamic visualization process is shown in Figure 2. It

outputs the definition of the presentation view to use for dis-
playing results, starting from a number of inputs specifying
relevant characteristics of the result set and the visualiza-
tion space. In particular, the result set data consists of a
ranked list of combinations, i.e., tuples of objects extracted
from different data sources and correlated by join condi-
tions. The result set model expresses properties of object
attributes that can be used for deciding the visualization
and also incorporates usage preferences. The visualization
models expresses the organization of the view, at the ab-
stract and concrete level. The abstract level specifies the
composition of the view in terms of canonical visualization
forms, called templates. Examples of templates are cartesian
planes, maps, timelines, vertical lists, and temporal anima-
tions (cartesian planes + time). The concrete level instan-
tiates templates by identifying the widgets to be actually
used to implement the template visualization paradigm.

The goal of the process is to determine the best mapping
from data providers (attribute values, object instances and
combinations of objects) to data renderers (axes and visual
clues that make up the templates) so that the result set is
visualized in a way that best matches the distribution of
objects and combinations in the result set, the types of the
object attributes, and the preferences about which informa-
tion to show first.

The output view is decided in consecutive steps. Dynamic
Analysis collects statistics on result set data that may im-
pact visualization (e.g., range and density of attribute val-
ues). In parallel, Static Analysis extracts from the result set



Figure 3: Meta-model of the result set

model visualization priorities of attributes according to the
characteristics of their type, their suitability to identify ob-
jects, and relative importance of their information content.

As a second step, starting from the abstract visualiza-
tion model, Data Mapping employs heuristics to calculate
a matching between the sorted list of attributes and the
available visualization templates. Each template receives a
suitability score and the top-ranked template is selected.

Figure 4: A rendered view (top) and its abstract
model (bottom)

Finally, View Construction converts the chosen abstract
template into a concrete view, by replacing abstract data
renderers with concrete widgets (e.g., a map template is
concretely implemented as a Google map view with over-
laid HTML 5 elements). The process can be recursive: if
attributes with priority above a threshold could not be as-
signed to a template, a sub-view can be created by invoking

the same process. Typically, this is done on an object-by-
object basis, to create sub-views that can be displayed on
demand (e.g., pop-up windows with the details of a doctor
not displayed on the map). When all important attributes
are mapped, the (possibly nested) view is instantiated and
added to the LQ GUI, to be directly rendered or suggested
to the user.

3.2 Result set model
The result set model specifies the properties relevant for

visualization of combinations, objects and attributes, which
conforms to the meta-model described in Figure 3. It rep-
resents type-level, instance-level and statistic information.

At the type level, the containment structure of combina-
tions, objects and attributes is represented, with the join
paths that correlate object types and the attributes used
for joining. Rank criteria of objects and combinations are
modeled as derived attributes consisting of weighed sums of
attribute values. Object rank can also be expressed simply
by the value of an attribute (marked by the isRank Boolean
flag). Attributes have a type, can be identifiers (e.g., pri-
mary or secondary key), and may denote categories (marked
by the isCategorical flag). At the instance level, combina-
tion instances contain object instances, which are tuple of
attribute values. Also, join path instances denote the sets of
target object associated to a source object. At the statistic
level, the results of dynamic analysis useful for visualization
are represented: the implicit enumeration type of string at-
tributes (e.g., the doctor’s specialties appearing in the result
set), the actual range of attribute values, the number of in-
stances of objects and combinations, the average selectivity
of attribute values and join paths; density statistics also
express the number of attribute values per interval in the
range. The instances of join paths can be used to support
nested object visualization: objects lacking a strong “visual
characterization” can be associated with stronger objects,
resulting in a nested visualization. Figure 4 shows an ex-
ample (on top): the placement of hospitals on the map is
exploited to show where the associated doctors work, even
if doctors are not geo-referenced per se.

Finally, the result set model also expresses different kinds
of quality values heuristically assigned by the mapping pro-
cess to the attributes.

The Distribution Quality is a numerical measure summa-
rizing the effectiveness of displaying the instances of a data



Figure 5: Meta-model of the visualization space

provider (combinations, objects instances, joined objects,
and attribute values) based on their distribution statistics.
For instance, an attribute with too dense value distribution
has low quality. This indicator is computed in two variants:
one (unclustered) for the case in which all distinct values
are rendered; one (clustered) for the case in which values
are grouped. The latter variant is computed when the den-
sity of unclustered values exceeds a threshold, based on a
subdivision of the range of values into fixed width intervals.

The Identification Power represents the suitability of the
attribute to denote meaningfully an object instance. For
instance, object’s external names have high identification
power. The value is derived from the specification of primary
or secondary key attributes in the definition of the queried
data sources.

The Object Priority and Attribute Type Priority repre-
sent respectively (i) the relative importance of objects (e.g.,
hospital first, then doctors) and (ii) a partial order over at-
tribute types boosting those types that have highly commu-
nicative power (like geographical coordinates, timestamps).
Similar boost is given to rank attributes.

The Usage Preference specifies the user-perceived suit-
ability of attributes to be associated to certain visualization
dimensions. For instance, latitude and longitude attributes
may have high usage preference values as data supplier to
Cartesian axes, while attributes correlated to the ranking
of objects can be effectively associated to visual clues, as
shown in Figure 4, where the size of the circle around an
hospital is proportional to its rank position.

3.3 Abstract visualization model
The meta-model of the abstract visualization is described

in Figure 5. A view contains one or more templates, con-
stituted by abstract data containers, which can be punc-
tual, monodimensional, bidimentional, or timed. Examples
of monodimensional data renderers are horizontal and ver-
tical axes, and temporal axes. The latter are intended as
a temporal animation where data values are presented in
succession. Example of punctual data containers are visual
clues (e.g., size and color). The mapping process associates
each data renderer to a data provider, which can be anything
containing values: a combination type, an object type, an
attribute or a join path.

Figure 4 shows an example of rendered view (top) and of
the corresponding abstract model (bottom) for our running

query. The view consists of a map template and of a nested
subview. The map templates has two axis, for geographical
coordinates, and a visual clue dimension, for a numerical
attribute. The subview consists of a list templates, with
one vertical axis and a visual clue for a numerical attribute.
The bottom part of Figure 4 shows the visualization model
resulting from the mapping process, and highlights the map-
ping of data providers to dimensions: the latitude and lon-
gitude of hospital objects are associated with the axis of the
map template, and the Hospital rank to the visual clue. The
axis of the list template in the subview is mapped to the ob-
ject instances of the Doctor object type, and the visual clue
to the doctor’s specialty and rank.

4. MAPPING SEARCH RESULTS TO VISU-
ALIZATIONS

We now illustrate the mapping process on the running
example. Table 1 shows a sample of combinations of the two
objects Hospital and Doctor used in the exemplification.

Static analysis extracts a number of metadata anno-
tated into the result data set model, whose values range
from 0 to 1, which we report in the following.

Object Priority and Attribute Type Priority. We assume
that our running query is meant to facilitate the location
of hospitals; therefore, all the Hospital attributes have the
highest object priority (objectPriority = 1). Also, geo-
graphical attributes have the highest attribute type priority
(attributeTypePriority = 1), since we assume that maps
are effective visualizations for objects with geo-referenced
attributes.

Identification Power. Hospital.Name, Hospital.Address and
Doctor.Name are assigned with the highest scores, given
their suitability to denote objects in the visualization space.

Rank Correlation. Score, Hospital.Rank and Doctor.Rank
have the highest rankCorrelation, being them ranking at-
tributes.

Usage Preference. Usage preferences depend on the avail-
able templates, which we assume to be: maps, timelines,
cartesian planes, and vertical lists, composed of axes and vi-
sual clues. Hospital.Lat and Hospital.Long have the highest
preference related to the visual elements XAsis and YAxis

respectively. Other secondary preferences for the XAxis el-
ement go to Hospital.Name and Doctor.Name, and for the
YAxis to Hospital.Rank, Doctor.Expertise and Doctor.Rank.



Table 1: Tabular representation of the result set of the running example.
Hospital Doctor

Score ID HospitalName Address Lat Long Rank ID Name Expertise Rank
0.923 1 Ospedale Nuovo Via G. Mazzini, 37 45,46331 9,18796 4.3 1 G. Azzoli Cardiologia 4
0.901 1 Ospedale Nuovo Via G. Mazzini, 37 45,46331 9,18796 4.3 4 T. Giudici Cardiologia 3
0.874 1 Ospedale Nuovo Via G. Mazzini, 37 45,46331 9,18796 4.3 2 S. Brambilla Ortopedia 5
0.837 2 Ospedale Sacro Cuore Via Medici, 37 45,46121 9,1807 4.1 3 M. Dell’Orto Cardiologia 3.5
0.789 2 Ospedale Sacro Cuore Via Medici, 37 45,46121 9,1807 4.1 5 F. Casiraghi Allergologia 4.5
0.676 2 Ospedale Sacro Cuore Via Medici, 37 45,46121 9,1807 4.1 9 G. Martinenghi Andrologia 2.5
0.556 3 Clinica D.M.S. Via Bergamini, 12 45,46195 9,19328 2.7 7 S. Secco Ortopedia 3

Table 2: Resulting values for the attribute ranking indexes.
Hospital Attributes Doctor Attributes

Visual Elements ID Name Address Lat Long Rank ID Name Expertise Rank
Xaxis 0 0,37 0,2593 0,833 0,615 0,466 0 0,244 0,2815 0,3426
Yaxis 0 0,259 0,2593 0,611 0,615 0,466 0 0,1333 0,2815 0,3426
Taxis 0 0 0 0 0 0 0 0 0 0
Clue 0 0 0 0 0 0,466 0 0 0,2815 0,3426

These preferences refer for example to visualizations where
cartesian spaces render values for the two ranking attributes
or statistics about doctors’ expertise. Given the absence of
temporal data, no preferences are computed for the element
TAxis. A preference for the Clue element is given to the two
rank attributes, as they are numeric.

Dynamic analysis refines the static scores with the char-
acteristics of the actual data to be rendered. It starts with
determining attribute ranges. For each interval attribute
(e.g., geo-localization, timestamp and numeric), the range
of values is determined and a resolution is estimated as the
minimum distance between two points so that they do not
overlap at rendering time. For example, given the Hospi-
tal.Long attribute, its variability range is 0, 01239 (about 1
km). Considering the limit of 20 points to be represented on
an axis, the resolution value therefore suggests that the min-
imum distance between points should be 0,002478 (about 50
mt). The analysis then proceeds by scoring each attribute
according to the following heuristics.

Categorical Attribute Identification looks for repeating val-
ues, with the aim of determining whether attributes denote
categories. This is useful in order to identify attributes
that can be effectively represented as clues. For exam-
ple, Doctor.Expertise has repeating values - several doctors
share a same expertise area. After removing the repeated
doctor instances, it is still possible to identify repeated val-
ues for this attribute. Its isCategorical property will be
therefore set to true.

Clustered Distribution Quality aims at recognizing the ex-
istence of groups of equal (or very closed w.r.t. the attribute
resolution) values. For example, 3 groups are identified for
the attribute Hospital.Name. Groups are ordered accord-
ing to their cardinality, and the percentage of combinations
falling into the first n groups is considered 1. For Hos-
pital.Name 100% of values fall into the identified groups.
The clustered distribution, quantified as 0.4, is determined
by correlating the number of groups, the percentage of in-
stances falling in the first n groups (the higher the better),
and the variance of groups cardinalities (the lower the bet-
ter). This last factor allows us to weigh the index value with

1The number n of groups that can be reasonably rendered
in a vis. space is heuristically set to 10 in our experiments.

respect to the presence of unbalanced clusters. In our ex-
ample, the Clustered Distribution Quality heuristics also ap-
plies to the Doctor.Expertise attribute. The resulting value
(0.6) is slightly higher than the one computed for the Hos-
pital attributes, due to the better distribution of values into
clusters, which minimizes the group cardinality variance.

Unclustered Distribution Quality is applied to interval at-
tributes and computes the distances between pairs of or-
dered values and compares them with the attribute resolu-
tion. Thus, this heuristic expresses how well distinct values
would distribute in the visualization space. For example,
the attributes Hospital.Lat and Hospital.Long do not fea-
ture overlapping values; also, the distances between pairs of
values is always greater than the resolution computed for the
two attributes during static analysis. The distance standard
deviation is also low, meaning that the points distribute ho-
mogeneously in the visualization space. Overall, the index
is relatively high (0, 72). Slightly lower values are achieved
for Hospital.Rank and Doctor.Rank (0, 65 and 0, 59 respec-
tively), due to a higher variance of their value distances. For
the attribute Doctor.Rank some values are even overlapped.

Attribute ranking aggregates a weighed average of the
static and dynamic analysis indexes, with the aim of ranking
the different attributes w.r.t. the different elements of the
visual model. The result is shown in Table 2.

Data Mapping starts from the attribute ranking and
matches attributes to visual dimensions of available tem-
plates, so to produce associations such as the one illustrated
in Figure 4. Each mapping is scored based on the strength of
the attribute and on the match between attributes and tem-
plate data renderers; then the top-ranked is selected. Match
strength also considers constraints and preferences. For ex-
ample, GPS attributes are always matched in pairs with the
X and Y axes. Also, rank and categorical attributes are
preferably associated with the clue dimension. For brevity,
we exemplify only the mapping of attributes to the map
template for the main view; attributes are also mapped to
the timeline, vertical list, and cartesian plane templates, but
the match score is lower and thus the map is selected. Simi-
larly, for the subview, we only comment the mapping to the
vertical list template, which wins over map, timeline, and
cartesian plane.
XAxis. It is associated with Hospital.Long ; this attribute



has a high score for the Object and Attribute Type Priority,
and a good score for the Unclustered Distribution Quality.
YAxis. Due to the previous choice, it is “necessarily”

associated with Hospital.Lat (geographical coordinates are
matched in pairs).
Clue. Since XAxis and YAxis both refer to attributes of a

same object (Hospital), then other attributes of this object
have priority as visual clues. Hospital.Rank has the high-
est rank and is therefore associated with Clue.Size. The
data renderer Clue.Info, which is a catchall renderer that
can be used with attributes of any type, is associated with
Hospital.Name and Hospital.Address. Since there are no cat-
egorical attributes for the Hospital object, Clue.Color and
Clue.shape are not instantiated.
NestedView. Since all the attributes of Hospital are mapped

and none of Doctor, a nested view is created. The mapping
algorithm is applied recursively to a data set reduced to
the Doctor instances. The vertical list template gets the
best matching score: indeed, the Yaxis element gets asso-
ciated with identifying attribute Doctor.Name. Clue.Color

is matched with Doctor.Expertise: indeed, being this a cate-
gorical attribute, its values can be effectively rendered through
different colors. Clue.Info gets associated with the remain-
ing attributes (only Doctor.Rank)

During the successive Concrete View Construction,
abstract renderers of the templates instantiated at the pre-
vious phase are replaced by concrete widgets. For example,
the map-based template is implemented through a Google
Map component, which visualizes the geographical attributes,
the size clue (by means of circles of different radius) and
the nested template (with pop-ups). The local rank of the
doctors is rendered graphically by using the stars clue, a
representation style supported by the widget.

Once the concrete widget is rendered, the user can per-
form some filtering actions that trigger the construction of
a new view. For example, given the map-based view rep-
resented in Figure 4, users might select a specific hospital,
focusing their interest on the specialists, so reducing the
result to the only Doctor object type. A new generation
process therefore starts, taking into account the Doctor’s at-
tributes and applying the steps previously described to such
attributes. For example, one top-ranked template would
consists of the association of the attribute Doctor.Expertise
with the XAxis element, of the Doctor.Rank attribute with
the YAxis, and of the Doctor.Name attribute with the Clue.
Info.

5. PRELIMINARY IMPLEMENTATION
We have implemented a first prototype adding dynamic

and adaptive result visualization to the LQ GUI component
shown in Figure 1. At server-side, the query processor has
been extended with an analysis component implemented in
Ruby on Rails, including two modules devoted to the static
and dynamic analysis. At the client side, a new UI-builder
module, implemented in JavaScript, assembles the user in-
terface according to the visualization templates and to the
result of a data mapping operation. The current implemen-
tation relies on an un-optimized delegation of the data map-
ping functions to the server side component. The client side
also comprises the concrete presentation widgets responsible
of rendering the result set and of capturing the user interac-
tion commands. Each widget is implemented as an HTML
and Javascript view component, configured and instantiated

at run-time by the view construction module, according to
the result of the calculated data mappings.

6. CONCLUSIONS
In this paper we have presented an approach for dynami-

cally creating the visualization of data sets for multi-domain
search applications. The data set and the visualization space
are modeled in a platform independent way and heuristic
transformation rules map the data set model into an ab-
stract visualization model, which is then made concrete by
instantiating abstract data renderers with widgets.

Future work will concentrate on the efficient client-side
implementation of the dynamic visualization architecture,
on the provision of more advanced visualization templates
and concrete widgets, such as those discussed in [1], and on
the fine tuning of heuristic mapping rules, also with the help
of usability studies.

Acknowledgments
This research is part of the Search Computing (SeCo) project,
funded by the European Research Council, under the IDEAS
Advanced Grants program.

7. REFERENCES
[1] W. Aigner, S. Miksch, H. Schumann, and C. Tominski.

Visualization of Time-Oriented Data. Springer, 2011.

[2] A. Bozzon et al. Liquid query: multi-domain
exploratory search on the web. In Proc. of WWW,
pages 161–170, 2010.

[3] A. Bozzon et al. Visualization of multi-domain ranked
data. In S. Ceri and M. Brambilla, editors, SeCO
Workshop, volume 6585 of LNCS, pages 53–69.
Springer, 2010.

[4] T. Catarci et al. User-Centered Data Management.
Morgan & Claypool, 2010.

[5] S. Ceri et al. Search computing: Managing complex
search queries. Internet Computing, IEEE, 14(6):14
–22, 2010.

[6] E. Chi. A taxonomy of visualization techniques using
the data state reference model. In INFOVIS, pages
69–76, 2000.

[7] E. M. Haber, Y. E. Ioannidis, and M. Livny.
Foundations of visual metaphors for schema display. J.
Intell. Inf. Syst., 3(3/4):263–298, 1994.

[8] J. D. Mackinlay. Automatic Design of Graphical
Presentations. PhD thesis, Stanford University, 1986.

[9] D. Newman et al. Visualizing search results and
document collections using topic maps. J. Web Sem.,
8(2-3):169–175, 2010.

[10] C. North. A taxonomy of information visualization
user-interfaces, 1998.

[11] A. Rajaraman. Kosmix: Exploring the deep web using
taxonomies and categorization. PVLDB,
2(2):1524–1529, 2009.

[12] J. Rodrigues, A. Traina, M. de Oliveira, and C. J.
Traina. Reviewing data visualization: an analytical
taxonomical study. In IV, pages 713–720, 2006.

[13] C. Stolte, D. Tang, and P. Hanrahan. Polaris: a
system for query, analysis, and visualization of
multidimensional databases. Commun. ACM,
51(11):75–84, 2008.




