首页
学习
活动
专区
圈层
工具
发布
社区首页 >专栏 >【毕业设计】基于Matlab的手写数字识别系统源码

【毕业设计】基于Matlab的手写数字识别系统源码

作者头像
用户11754185
发布2025-12-16 18:45:15
发布2025-12-16 18:45:15
1500
举报

该课题为基于Matlab的手写数字识别系统。在一张图像上面手写了很多手写数字。利用鼠标进行框定你所要识别的数字区域。裁剪灰度化处理,二值化处理。提取数字特征。利用神经网络的方法进行识别。带有人际交互界面,需要在人际交互界面的基础上进行相应拓展。

GUI设计图:

gui实现代码:

代码语言:javascript
复制
function varargout = charGUI(varargin)
%窗体初始化代码
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name',       mfilename, ...
    'gui_Singleton',  gui_Singleton, ...
    'gui_OpeningFcn', @charGUI_OpeningFcn, ...
    'gui_OutputFcn',  @charGUI_OutputFcn, ...
    'gui_LayoutFcn',  [] , ...
    'gui_Callback',   []);
if nargin && ischar(varargin{1})
    gui_State.gui_Callback = str2func(varargin{1});
end
 
if nargout
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
    gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
 
 
% --- Executes just before charGUI is made visible.
function charGUI_OpeningFcn(hObject, eventdata, handles, varargin)
 
load data;
assignin('base','net',net);
handles.output = hObject;
set(gcf,'name','联系微信:matlab1998  ');
guidata(hObject, handles);
 
 
% --- Outputs from this function are returned to the command line.
function varargout = charGUI_OutputFcn(hObject, eventdata, handles)
 
 
% Get default command line output from handles structure
varargout{1} = handles.output;
 
 
% --- 装入图像.
function pbLoad_Callback(hObject, eventdata, handles)
[filename, pathname] = uigetfile({'*.bmp';'*.jpg';'*.gif';'*.*'}, '装入图像文件');
S = imread([pathname,filename]);
axes(handles.axes1);
imshow(S);
 
handles.S = S;
guidata(hObject, handles);
 
 
% --- 选择识别区域.
function pbSelect_Callback(hObject, eventdata, handles)
S = handles.S;
axes(handles.axes1);
img_crop = imcrop(S);
axes(handles.axes2);
imshow(img_crop);
 
handles.img_crop = img_crop;
guidata(hObject, handles);
 
 
 
% --- 图像预处理.
function pbPreprocess_Callback(hObject, eventdata, handles)
img_crop = handles.img_crop;
imgGray = rgb2gray(img_crop);
bw = im2bw(img_crop,graythresh(imgGray));
axes(handles.axes3);
imshow(bw);
bw2 = edu_imgcrop(bw);
axes(handles.axes4);
imshow(bw2);
handles.bw2 = bw2;
guidata(hObject, handles);
 
 
% --- 特征抽取.
function pbExtract_Callback(hObject, eventdata, handles)
 
 
msgbox('后续思路:微信:matlab1998')
return
 
% -字符识别.
function pbRecognize_Callback(hObject, eventdata, handles)
 
 
msgbox('后续思路:微信:matlab1998')
return
 
 
% --- Executes on button press in pbNN.
function pbNN_Callback(hObject, eventdata, handles)
 
 
 
 
function editNN_Callback(hObject, eventdata, handles)
 
function editNN_CreateFcn(hObject, eventdata, handles)
 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
    set(hObject,'BackgroundColor','white');
end
 
 
function editResult_Callback(hObject, eventdata, handles)
 
function editResult_CreateFcn(hObject, eventdata, handles)
 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
    set(hObject,'BackgroundColor','white');
end

主程序代码:

代码语言:javascript
复制
%%训练神经网络
%% Read the image
I = imread('sample.bmp');
 
%% Image Preprocessing
img = edu_imgpreprocess(I);
for cnt = 1:50
    bw2 = edu_imgcrop(img{cnt});
    charvec = edu_imgresize(bw2);
    out(:,cnt) = charvec; 
end
 
%% Create Vectors for the components (objects)
P = out(:,1:40); 
T = [eye(10) eye(10) eye(10) eye(10)];
Ptest = out(:,41:50);
 
%% Creating and training of the Neural Network
net = edu_createnn(P,T);
 
%% Testing the Neural Network
[a,b]=max(sim(net,Ptest));
disp(b);

运行步骤:

基于BP神经网络的手写数字识别 运行方式: matlab命令行窗口输入guide回车,选择文件夹内的charGUI.fig文件运行即可。

char3.m是神经网络训练程序,训练样本是sample.bmp

完整源码下载:

https://download.csdn.net/download/lwx666sl/89256945

https://download.csdn.net/download/lwx666sl/89256945

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2025-12-09,如有侵权请联系 [email protected] 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 [email protected] 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档