Affective Computing
Affective Computing (auch: Emotions-KI, Gesinnungsanalyse) ist eine Technologie durch Einsatz von Künstlicher Intelligenz menschliche Affekte und Emotionen durch Computer zu erkennen.
Entwicklung
Der Begriff »Affective Computing« stammt von Rosalind Picard, die als eine der ersten sich mit diesem Gebiet befasste und die Möglichkeit sah, das von Paul Ekman entwickelte Facial Action Coding System zur Beschreibung von Gesichtsausdrücken mit Rechnern zu automatisieren. Laut Ekman schlüpfen, selbst wenn Personen ihre emotionale Kommunikation zu zensieren oder zu kontrollieren versuchen, »Leaks« durch die Maschen der Kontrolle.[1]
Picard stellte sich einen Computer als »affektiven Spiegel« vor, der einen als Coach auf ein Vorstellungsgespräch oder eine Verabredung vorbereiten könne und z. B. auf aggressive Untertöne aufmerksam machen könne. Oder auch als ein Feedback für Spieleentwickler über das Frustationslevel der Spieler. Ihre Arbeiten über »Affective Computing« veröffentlichte sie 1995 in einem Report[2] und 2000 in dem Buch, Affective Computing.[3]
Zusammen mit Rana el Kaliouby gründete Picard 2009 das Unternehmen »Affectiva«, das auf einer im Media Lab des Massachusetts Institute of Technology entwickelten Technologie gegründet wurde.[4] Unter Leitung von Kaliouby wendete es sich zum Überwachungskapitalismus hin. Kaliouby meint, wir werden das pausenlose Scannen von Emotionen irgendwann genauso hinnehmen wie das Setzen von Cookies beim Surfen im Web. »Affectiva« bietet »Emotion als Dienstleistung«, bei der man eine Auswertung von eingesandten Videos oder Fotos erhält.[5]
2015 erhielt das Start-up Realeyes von der Europäischen Kommission Fördermittel für das Projekt »SEWA: Automatic Sentiment Analysis in the Wild«, welches die Emotionen des Betrachters von Content erkennen kann, und ob er ihm gefällt. 2016 bekam Realeyes dafür den Innovationspreis der Kommission. In der Produktbeschreibung von SEWA steht, dass solche Technologien sogar Verhaltensindikatoren vermessen können, die zu subtil oder flüchtig sind, um von menschlichen Augen oder Ohren gemessen zu werden.[6]
2014 erhielt Facebook ein Patent für »Emotionserkennung«, um das Interesse des Nutzers am dargestellten Content erkennen zu können.[7]
Eine Firma namens Emoshape produziert einen Mikrochip, von dem sie behauptet er könne mit einer Wahrscheinlichkeit bis zu 98 % zwölf Emotionen klassifizieren, was es seiner künstlichen Intelligenz erlaube, 64 Billionen möglicher Zustände zu erfahren.[8]
Die EU-Kommission möchte mit „iBorderCtrl“ Affective Computing für eine Art Lügendetektor einsetzen mit denen Einreisende in die EU überprüft werden sollen.[9]
Methodik
Der emotionale Zustand eines Menschen, der aus seiner Wahrnehmung, seinem Denken und Fühlen resultiert, kann von einer anderen Person nicht direkt beobachtet werden. Was wir beobachten, sind Symptome des emotionalen Zustandes der anderen Person, die von der Sprache bis zu Gesten (der Körpersprache) reichen. Insbesondere der Gesichtsausdruck (Mimik) ist eine sehr wichtige kommunikative Quelle in den zwischenmenschlichen Beziehungen. Sie ergänzt die von der Sprache ausgehende Symptomatik und gibt dem Zuhörer zusätzliche Hinweise über die Bedeutung der gesprochenen Wörter.[2]
Nach einer Studie des US-amerikanischen Psychologieprofessors Albert Mehrabian sind die Worte jedoch nur zu 7 % für den Gesamteindruck verantwortlich, den ein Mensch auf seinen Gesprächspartner mache. Zu 38 % zähle der Tonfall der Stimme und zu 55 % die Körpersprache.
Der Stimme können wir die emotionalen Zustände einer Person entnehmen, die durch Glück, Angst, Freude oder Trauer geprägt ist. Vokale Emotionen können auch von kleinen Kindern verstanden werden, bevor sie verstehen, was gesagt wurde.
Zur Frage: Kann die Maschine Gefühle erkennen? Antwortet Rosalind Picard: „Maschinen erkennen Emotionen, unsere tiefen Gefühle können sie nicht erfassen.“
Der Designer und Ingenieur Claude Toussaint des Pflegeroboters Navel[10]: „Das System kann nur Signale wahrnehmen. Es kann zum Beispiel nicht unterscheiden, ob das Lachen ein Ausdruck von Freude oder eine Übersprungshandlung ist. Wir Menschen haben da ein sehr viel breiteres Verständnis von Kontext.“[11]
Gesichtsausdrücke
Die meisten heutigen Ansätze, Gesichtsausdrücke zu erkennen, basierend auf dem „Facial Action Coding System“ des Psychologen Paul Ekman.[12] So werden Aufmerksamkeitsmuskel, Muskel der Lust, Muskel der Verachtung oder des Zweifels und Muskel der Freude unterschieden. Die unterschiedlichen Gesichtsausdrücke werden in Gesichtsausdrucksparametern kodiert, die dann von Computern gelesen und erkannt werden können.
Die Gesichtsausdrucksparameter werden in sieben universelle emotionale Ausdrücke eingeteilt: glücklich, wütend, Angst, Ekel, traurig, Überraschung und neutral. Die Daten werden experimentell ermittelt und stehen in drei öffentlichen Gesichtsbilddatenbanken JAFFE[13], MMI[14] und CK+[15] zur Verfügung.[16]
Nach Rana el Kaliouby sind die Gesichtszüge, die Stimme und die Wortwahl eines Menschen die wichtigsten Ausdrucksformen für die Maschinen, um zu lernen, Emotionen zu erkennen oder zu vermitteln. Unser Gesicht ist einer der wirksamsten Kanäle, um soziale und emotionale Zustände zu vermitteln. Die Wissenschaft unterteilt die Gesichtsmuskelbewegungen dabei in 45 sogenannte Action Units, also Signale, die ausgelesen werden können. Mit denen lässt sich ein Algorithmus programmieren, der die wichtigsten Regungen erkennt.
»Affectiva« hat eine Datenbank für solche Signale erarbeitet, in der knapp drei Millionen Videos von Gesichtern ausgewertet wurden und diese in mehr als zwölf Milliarden emotionale Datenpunkte zerlegt.[11] Ursprünglich war die Technologie, auf der »Affectiva« basiert, für Menschen mit Autismus gedacht, die Schwierigkeiten haben, emotionale Reaktionen zu zeigen. Das mathematische Modell war daher auf die Erkennung schwer wahrnehmbarer Veränderungen im Ausdruck hin entwickelt worden.[4]
Anwendungen
Die Emotionserkennung im Auto, auch als Mobilitäts-KI bezeichnet, erweitert die Müdigkeitserkennung, die es in manchen Marken bereits serienmäßig gibt, indem Sensoren Lenk- und Pedalverhalten auswerten und den Faktor Zeit dazu nehmen. Errechnet das System Ermüdungserscheinungen, gibt es ein Warnsignal und auf dem Armaturenbrett blinkt eine Kaffeetasse mit der Hinweismeldung auf, es sei nun mal Zeit für eine Pause. Mit der Emotionserkennung werden so ziemlich alle emotionalen Faktoren erfasst, die als Verkehrsgefährdung gelten. Von der Müdigkeit über die Unkonzentriertheit und Ablenkungen bis zum Zorn. Dafür beobachten Kameras im Innenraum nicht nur den Menschen auf dem Fahrersitz, sondern auch die auf dem Beifahrersitz und auf der Rückbank. Ein Viertel aller Unfälle soll auf solche Fahrerschwächen zurückgehen.[11]
Um die Unfallzahlen und die im Straßenverkehr verunglückten Verkehrsteilnehmer nachhaltig zu reduzieren, schreibt die EU vom 6. Juli 2022 weitere Assistenzsysteme in Pkw vor.[17] Danach müssen Neuwagen mit einer Sicherheitstechnologie wie der „Fahrerraumüberwachung“ ausgestattet sein. Die Aufzeichnung von Augen- bzw. Lidbewegungen und/oder der Lenkbewegungen spielt dabei eine große Rolle. Diese Daten sollen kontinuierlich aufgezeichnet und vorgehalten werden. Allerdings dürfen sie nur in dem geschlossenen System verarbeitet und zu keiner Zeit an Dritte weitergegeben werden.[18]
Callcenter nutzen die Anwendungen der Emotionserkennung, um die Belastung ihres Personals zu minimieren. Spracherkennungsprogramme können einer Kundenbetreuerin zum Beispiel signalisieren, dass ein Anrufer sehr wütend ist. Die Programme bieten auch gleich eine Anleitung an, wie man so ein Servicegespräch deeskaliert.
Kritik
Der israelische Historiker Yuval Noah Harari warnt:
„Wir müssen uns darüber im Klaren sein, dass Wut, Freude, Langeweile und Liebe biologische Phänomene sind, genau wie Fieber und Husten. Denn dieselbe Technologie, die Husten identifiziert, könnte auch Lachen identifizieren. Wenn Unternehmen und Regierungen damit beginnen, unsere biometrischen Daten massenhaft zu sammeln, können sie uns viel besser kennenlernen, als wir uns selbst kennen, und sie können dann nicht nur unsere Gefühle vorhersagen, sondern auch unsere Gefühle manipulieren und uns alles verkaufen, was sie wollen - sei es ein Produkt oder einen Politiker. Eine biometrische Überwachung würde die Datenhacking-Strategien von Cambridge Analytica wie ein Überbleibsel aus der Steinzeit aussehen lassen. Stellen wir uns einmal Nordkorea im Jahr 2030 vor, wenn jeder Bürger rund um die Uhr ein biometrisches Armband tragen muss. Wenn man sich dann eine Rede des ‚Obersten Führers’ anhört und das Armband die verräterischen Zeichen von Wut auffängt, ist man erledigt.“[19]
Patrick Breyer kritisiert im Zusammenhang mit der geplanten „iBorderCtrl“:
„Systeme zur Erkennung auffälligen Verhaltens erzeugen schrittweise eine gleichförmige Gesellschaft passiver Menschen, die bloß nicht auffallen wollen. Eine solche tote Überwachungsgesellschaft ist nicht lebenswert.“[20]
Rechtslage
Zum Schutz natürlicher Personen bei der Anwendung von KI-Systemen fordert der Entwurf in der KI-Verordnung der Europäischen Kommission (April 2021) in Artikel 52, Transparenzpflichten für bestimmte KI-Systeme:[21]
1. Anbieter stellen sicher, dass KI-Systeme, die für die Interaktion mit natürlichen Personen bestimmt sind, so konzipiert und entwickelt werden, dass natürliche Personen darüber informiert werden, dass sie mit einem KI-System interagieren, es sei denn, dies ist aus den Umständen und dem Kontext der Nutzung offensichtlich.
2. Nutzer eines Emotionserkennungssystems oder eines biometrischen Kategorisierungssystems müssen die natürlichen Personen, die diesem ausgesetzt sind, über die Funktionsweise des Systems informieren.
Siehe auch
Literatur
- Mehrabian, Albert, Silent Messages: Implicit Communication of Emotions and Attitudes, Belmont, Calif.: Wadsworth Pub. Co. 1981
- Rosalind W. W. Picard: Affective Computing. MIT Press 2000. ISBN 0262661152.
- Shoshana Zuboff: Das Zeitalter des Überwachungskapitalismus. Frankfurt/New York 2018.
- Gerardus Blokdyk: Affective Computing A Complete Guide – 2020 Edition.
- Shaundra B. Daily, Melva T. James, David Cherry, John J. Porter, Shelby S. Darnell, Joseph Isaac, Tania Roy: Chapter 9 – Affective Computing: Historical Foundations, Current Applications, and Future Trends. In: Editor: Myounghoon Jeon, Emotions and Affect in Human Factors and Human-Computer Interaction, Academic Press, 2017, Pages 213–231, ISBN 9780128018514, doi:10.1016/B978-0-12-801851-4.00009-4.
- Hu, X. et al. (2019) ‘Ten challenges for EEG-based affective computing’, Brain Science Advances, 5(1), pp. 1–20. doi:10.1177/2096595819896200.
Einzelnachweise
- ↑ Zuboff, S. 326 f.
- ↑ a b Rosalind W. Picard: Affective Computing, In M.I.T Media Laboratory Perceptual Computing Section Technical Report No. 321.
- ↑ Rosalind W. Picard: Affective Computing, MIT Press, 24. Juli 2000.
- ↑ a b Jim Kerstetter: Building better Super Bowl ads by watching you watch them, in CNET, 2. Februar 2013.
- ↑ Zuboff, S. 327 ff.
- ↑ Zuboff, S. 323 f.
- ↑ Zuboff, S. 329.
- ↑ Zuboff, S. 331.
- ↑ https://www.patrick-breyer.de/pressebriefing-transparenzklage-gegen-geheime-eu-ueberwachungsforschung-iborderctrl/
- ↑ Navel – der soziale Roboter
- ↑ a b c Andrian Kreye, Felix Hunger: Mensch wie geht es dir? Künstliche Intelligenz - Über empathische Roboter und die Entschlüsselung unserer Gefühle, Süddeutsche Zeitung, 21. Januar 2023.
- ↑ P. Ekman and W. Friesen: Facial Action Coding System. Consulting Psychologists Press, 1977.
- ↑ JAFFE (Japanese Female Facial Expression).
- ↑ MMI Facial Expression Database.
- ↑ CK+ (Extended Cohn-Kanade dataset)
- ↑ Sajjad Muhammad: Facial appearance and texture feature-based robust facial expression recognition framework for sentiment knowledge discovery, Springer, März 2018.
- ↑ Verordnung über die Typgenehmigung von Kraftfahrzeugen und Kraftfahrzeuganhängern sowie von Systemen, Bauteilen und selbstständigen technischen Einheiten für diese Fahrzeuge, VERORDNUNG (EU) 2019/2144 DES EUROPÄISCHEN PARLAMENTS UND DES RATES, 27. November 2019.
- ↑ Fahrassistenzsysteme - Pflicht ab dem 6. Juli 2022, TÜV Nord.
- ↑ Zit. n.: Klaus Schwab, Thierry Malleret: Covid-19: Der Grosse Umbruch. Cologny 2020, S. 199 f.
- ↑ https://www.patrick-breyer.de/pressebriefing-transparenzklage-gegen-geheime-eu-ueberwachungsforschung-iborderctrl/
- ↑ Proposal for a Regulation laying down harmonised rules on artificial intelligence, European Commission, 21 April 2021.