Mills’ Konstante

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Die Druckversion wird nicht mehr unterstützt und kann Darstellungsfehler aufweisen. Bitte aktualisiere deine Browser-Lesezeichen und verwende stattdessen die Standard-Druckfunktion des Browsers.

Mills’ Konstante ist in der Zahlentheorie definiert als die kleinste positive reelle Zahl , so dass das Abrunden der doppelten Exponentialfunktion

eine Primzahl ergibt für alle positiven ganzen Zahlen (dabei ist mit die Abrundungsfunktion gemeint). Die Konstante wurde nach William H. Mills benannt, der 1947 ihre Existenz bewies[1] und sich auf die Arbeiten von Guido Hoheisel und Albert Ingham zu Primzahllücken stützte. Der genaue Wert der Konstante ist unbekannt, aber sofern die Riemann-Hypothese wahr ist, beträgt dieser etwa 1,3063778838630806904686144926… (Folge A051021 in OEIS).

Mills-Primzahlen

Die durch Mills’ Konstante erzeugten Primzahlen sind als Mills-Primzahlen bekannt. Wenn die Riemann-Hypothese wahr ist, beginnt diese Folge mit:

2, 11, 1361, 2521008887, 16022236204009818131831320183, 4113101149215104800030529537915953170486139623539759933135949994882770404074832568499, … (Folge A051254 in OEIS).

Wenn die i-te Primzahl der Folge bezeichnet, dann kann berechnet werden als die kleinste Primzahl größer . Um sicherzustellen, dass Runden von für n = 1, 2, 3, … eine Primzahlfolge produziert, muss zudem gelten. Die Hoheisel-Ingham-Abschätzung garantiert, dass zwischen zwei beliebigen genügend großen Kubikzahlen stets eine Primzahl liegt, was ausreichend ist, um diese Ungleichung für eine genügend große erste Primzahl zu beweisen. Da die Riemann-Hypothese impliziert, dass zwischen zwei beliebigen aufeinanderfolgenden Kubikzahlen eine Primzahl liegt, kann die Einschränkung von „genügend großen“ Zahlen fallen gelassen werden, woraus sich die kleinste Mills-Primzahl von a1 = 2 ergibt.

Die 11. und größte gegenwärtig bekannte Mills-Primzahl lautet:

Sie hat 20.562 Stellen und wurde am 5. Juni 2006 von François Morain entdeckt. Allerdings wurde erst im April 2017 bewiesen, dass diese Zahl tatsächlich eine Primzahl ist.[2][3]

Momentan sind 3 weitere Mills-Primzahlen bekannt (unter der Annahme der Riemann-Hypothese). Sollte die Hypothese nicht stimmen, sind diese drei Zahlen zumindest PRP-Zahlen.[4]

Die 14. und größte gegenwärtig bekannte Mills-Primzahl (unter Annahme der Riemann-Hypothese) ist:

Sie hat 555.154 Stellen.

Die Stellenzahl verdreifacht sich dabei grob für jede weitere Mills-Primzahl.

Die folgenden Zahlenfolge (für ) erzeugt diese Primzahlen mittels :

3, 30, 6, 80, 12, 450, 894, 3636, 70756, 97220, 66768, 300840, 1623568 (Folge A108739 in OEIS)

Numerische Berechnung

Mills’ Konstante kann durch Berechnung der Mills-Primzahlen wie folgt approximiert werden:

Caldwell und Cheng[5] konnten mit dieser Methode die Konstante auf 6850 Nachkommastellen genau berechnen. Es ist weder bekannt, ob sich Mills’ Konstante in einer geschlossenen Form berechnen lässt, noch ob sie eine rationale Zahl ist.[6] Wenn sie rational ist und wenn man die Periode der Dezimaldarstellung dieser rationalen Zahl kennt, kann man damit unendlich viele Primzahlen generieren (siehe Primzahlgenerator).

Annäherung von Mills’ Konstante durch Bruchzahlen

Man kann Mills’ Konstante auch näherungsweise durch Kettenbrüche darstellen. Die Kettenbruchdarstellung von lautet:

(Folge A123561 in OEIS)

Wählt man die ersten fünf Werte dieser Zahlenfolge, so erhält man:

Wählt man die ersten sechs Werte dieser Zahlenfolge, so erhält man:

Wählt man die ersten sieben Werte dieser Zahlenfolge, so erhält man:

Diese Kettenbrüche ergeben abwechselnd jeweils zu große bzw. zu kleine Näherungsbrüche von . Die Näherungsbrüche, die man durch obige Kettenbruch-Entwicklung bekommt, sind die folgenden:

Verallgemeinerungen

  • Es gibt keinen Grund, warum in der obigen doppelten Exponentialfunktion der Mittelteil unbedingt eine 3 sein muss. Tatsächlich konnten L. Kuipers und A. R. Ansari dieses Ergebnis verallgemeinern, indem sie Folgendes zeigten:[7]
Es gibt zu jeder reellen Zahl , eine Konstante , sodass prim ist für alle positiven ganzen Zahlen .
  • Man kann auch die Abrundungsfunktion () durch die Aufrundungsfunktion () ersetzen. Der Mathematiker László Tóth konnte im Jahr 2017 folgende Aussage beweisen:[7]
Es gibt zu jeder natürlichen Zahl , eine Konstante , sodass prim ist für alle positiven ganzen Zahlen .
Beispiel: Sei
Dann ist (Folge A300753 in OEIS)
Die dadurch erzeugten Primzahlen lauten:
2, 7, 337, 38272739, 56062005704198360319209, 176199995814327287356671209104585864397055039072110696028654438846269, … (Folge A118910 in OEIS)
  • Elsholtz konnte ohne Rückgriff auf die Riemannsche Vermutung zeigen, dass für jede natürliche Zahl eine Primzahl ist, wobei .[8]

Siehe auch

Einzelnachweise

  1. William H. Mills: A prime-representing function. In: Bulletin of the American Mathematical Society. Band 53, Nr. 6, 1947, ISSN 0002-9904, S. 604 ff., doi:10.1090/S0002-9904-1947-08849-2.
  2. ((((((25210088873 + 80)3 + 12)3 + 450)3 + 894)3 + 3636)3 + 70756)3 + 97220 auf Prime Pages
  3. Liste der 5000 größten bekannten Primzahlen (englisch). Abgerufen am 23. Dezember 2019.
  4. Henri Lifchitz, Renaud Lifchitz: PRP Top Records - Search by form (((((((((?+450)^3+? PRP Records, abgerufen am 2. Januar 2020.
  5. Chris K. Caldwell, Yuanyou Cheng: Determining Mills’ Constant and a Note on Honaker’s Problem. In: Journal of Integer Sequences. Vol. 8, Nr. 4, 2005 (Volltext).
  6. Steven R. Finch: Mills’ Constant. In: Mathematical Constants. Cambridge University Press, 2003, ISBN 0-521-81805-2, S. 130–133.
  7. a b László Tóth: A Variation on Mills-Like Prime-Representing Functions. Journal of Integer Sequences, Vol. 20, Article 17.9.8, 2017, S. 1–5, abgerufen am 2. Januar 2020.
  8. Christian Elsholtz: Unconditional Prime-Representing Functions, Following Mills. In: American Mathematical Monthly. 127. Jahrgang, Nr. 7, 202, S. 639–642, doi:10.1080/00029890.2020.1751560, arxiv:2004.01285.