@@ -57,9 +57,9 @@ sudo pip install dist/your_wheel_name.whl
57
57
```
58
58
59
59
### (Optional) 安装TensorFlow
60
- ** GL** 提供的Tensorflow模型示例基于** TensorFlow 1.12 ** 开发,需要安装对应版本的库。
60
+ ** GL** 提供的Tensorflow模型示例基于** TensorFlow 1.13 ** 开发,需要安装对应版本的库。
61
61
``` bash
62
- sudo pip install tensorflow==1.12 .0
62
+ sudo pip install tensorflow==1.13 .0
63
63
```
64
64
65
65
### (Optional) 安装PyTorch,PyG
@@ -83,24 +83,24 @@ source env.sh
83
83
[ Graphlearn Docker hub] ( https://hub.docker.com/r/graphlearn/graphlearn )
84
84
85
85
我们提供了graphlearn的镜像,预装了对应版本的graphlearn。<br />
86
- 根据算法开发的需求,分别提供预装Tensorflow1.13.0和Pytorch1 .8.1+PyG的镜像。<br />
86
+ 根据算法开发的需求,分别提供预装Tensorflow1.13.0rc1和Pytorch1 .8.1+PyG的镜像。<br />
87
87
您可以在Docker镜像中快速开始GraphLearn的运行。<br />
88
88
89
- 1 . Tensorflow1.12.0 , CPU
89
+ 1 . Tensorflow1.13.0rc1 , CPU
90
90
91
91
``` bash
92
92
docker pull graphlearn/graphlearn:1.0.0-tensorflow1.13.0rc1-cpu
93
93
94
- # or, pull the latest graphlearn with tensorflow1.13.0rc1-cpu
94
+ # or, pull the latest graphlearn with 1.0.0- tensorflow1.13.0rc1-cpu
95
95
docker pull graphlearn/graphlearn:latest
96
96
97
- # or, pull the given version graphlearn with tensorflow1.13.0rc1-cpu
97
+ # or, pull the given version graphlearn with 1.0.0- tensorflow1.13.0rc1-cpu
98
98
docker pull graphlearn/graphlearn:1.0.0
99
99
100
100
```
101
101
102
102
2 . PyTorch1.8.1, Cuda10.2, cdnn7, with PyG
103
103
104
104
``` bash
105
- docker pull graphlearn/graphlearn:1.0.0-torch1.8.1-cuda10.2-cdnn7
105
+ docker pull graphlearn/graphlearn:1.0.0-torch1.8.1-cuda10.2-cudnn7
106
106
```
0 commit comments