|
| 1 | +# Data objects |
| 2 | + |
| 3 | +GraphLearn describes the result of traversal and sampling as a data object; GraphLearn traversal and sampling are Batch operations, in which the number of neighbors/negative neighbors of a Batch can be equal or unequal, so sampling is divided into aligned and non-aligned sampling. |
| 4 | + |
| 5 | +The result of vertex traversal and aligned vertex sampling is `Nodes`, and the result of non-aligned vertex sampling is `SparseNodes`. Correspondingly, edge traversal and aligned edge sampling results in `Edges`, and non-aligned edge sampling results in `SparseEdges`. <br /> |
| 6 | + |
| 7 | +## Dense data objects |
| 8 | +### `Nodes` |
| 9 | + |
| 10 | +```python |
| 11 | +@property |
| 12 | +def ids(self): |
| 13 | +""" vertex id, numpy.ndarray(int64) """ |
| 14 | + |
| 15 | +@property |
| 16 | +def shape(self): |
| 17 | +""" vertex id's shape, (batch_size) / (batch_size, neighbor_count) """ |
| 18 | + |
| 19 | +@property |
| 20 | +def int_attrs(self): |
| 21 | +""" attributes of type int, numpy.ndarray(int64), shape as [ids.shape, number of attributes of type int] """ |
| 22 | + |
| 23 | +@property |
| 24 | +def float_attrs(self): |
| 25 | +""" properties of type float, numpy.ndarray(float32), shape is [ids.shape, number of properties of type float] """ |
| 26 | + |
| 27 | +@property |
| 28 | +def string_attrs(self): |
| 29 | +""" attributes of type string, numpy.ndarray(string), shape is [ids.shape, number of attributes of type string] """ |
| 30 | + |
| 31 | +@property |
| 32 | +def weights(self): |
| 33 | +""" weights, numpy.ndarray(float32), shape is ids.shape """ |
| 34 | + |
| 35 | +@property |
| 36 | +def labels(self): |
| 37 | +""" labels, numpy.ndarray(int32), shape is ids.shape """ @property |
| 38 | +def ids(self): |
| 39 | +""" vertex id, numpy.ndarray(int64) """ |
| 40 | + |
| 41 | +@property |
| 42 | +def shape(self): |
| 43 | +""" vertex id's shape, (batch_size) / (batch_size, neighbor_count) """ |
| 44 | + |
| 45 | +@property |
| 46 | +def int_attrs(self): |
| 47 | +""" attributes of type int, numpy.ndarray(int64), shape as [ids.shape, number of attributes of type int] """ |
| 48 | + |
| 49 | +@property |
| 50 | +def float_attrs(self): |
| 51 | +""" properties of type float, numpy.ndarray(float32), shape is [ids.shape, number of properties of type float] """ |
| 52 | + |
| 53 | +@property |
| 54 | +def string_attrs(self): |
| 55 | +""" attributes of type string, numpy.ndarray(string), shape is [ids.shape, number of attributes of type string] """ |
| 56 | + |
| 57 | +@property |
| 58 | +def weights(self): |
| 59 | +""" weights, numpy.ndarray(float32), shape is ids.shape """ |
| 60 | + |
| 61 | +@property |
| 62 | +def labels(self): |
| 63 | +""" labels, numpy.ndarray(int32), shape as ids.shape """ |
| 64 | +``` |
| 65 | + |
| 66 | +### `Edges` |
| 67 | +The difference between the `Edges` interface and `Nodes` is that the `ids` interface has been removed and the following four interfaces have been added for accessing source and destination vertices. |
| 68 | + |
| 69 | +```python |
| 70 | +@property |
| 71 | +def src_nodes(self): |
| 72 | +""" source vertex Nodes object """ |
| 73 | + |
| 74 | +@property |
| 75 | +def dst_nodes(self): |
| 76 | +""" destination vertex Nodes object """ |
| 77 | + |
| 78 | +@property |
| 79 | +def src_ids(self): |
| 80 | +""" source vertex id, numpy.ndarray(int64) """ |
| 81 | + |
| 82 | +@property |
| 83 | +def dst_ids(self): |
| 84 | +""" destination vertex id, numpy.ndarray(int64) """ |
| 85 | +``` |
| 86 | + |
| 87 | +Regarding the shape of `ids`, in vertex and edge traversal operations, the shape is one-dimensional and the size is the specified batch size. In sampling operations, the shape is two-dimensional and the size is [the one-dimensional expansion size of the input data, the current number of samples]. |
| 88 | + |
| 89 | +## Sparse data object |
| 90 | + |
| 91 | +### `SparseNodes` |
| 92 | +`SparseNodes` is used to express the sparse neighbor vertices of a vertex, with the following additional interface relative to Nodes. |
| 93 | + |
| 94 | +```python |
| 95 | +@property |
| 96 | +def offsets(self): |
| 97 | +""" one-dimensional shape-shifting array: the number of neighbors per vertex """ |
| 98 | + |
| 99 | +@property |
| 100 | +def dense_shape(self): |
| 101 | +""" tuples with 2 elements: the shape of the corresponding Dense Nodes """ |
| 102 | + |
| 103 | +@property |
| 104 | +def indices(self): |
| 105 | +""" 2-dimensional array representing the position of each neighbor """ |
| 106 | + |
| 107 | +def __next__(self): |
| 108 | +""" the traversal interface, traversing the vertices of each vertex's neighbors """ |
| 109 | + return Nodes |
| 110 | +``` |
| 111 | + |
| 112 | +### `SparseEdges` |
| 113 | +``SparseEdges`` is used to express the sparse neighboring edges of a vertex, with the following additional interface relative to Edges. |
| 114 | + |
| 115 | +```python |
| 116 | +@property |
| 117 | +def offsets(self): |
| 118 | +""" one-dimensional shape-shifting array: the number of neighbors per vertex """ |
| 119 | + |
| 120 | +@property |
| 121 | +def dense_shape(self): |
| 122 | +""" tuples with 2 elements: the shape of the corresponding Dense Edges """ |
| 123 | + |
| 124 | +@property |
| 125 | +def indices(self): |
| 126 | +""" 2-dimensional array representing the position of each neighbor """ |
| 127 | + |
| 128 | +def __next__(self): |
| 129 | +""" the traversal interface, traversing the edges of each vertex's neighbors """ |
| 130 | + return Edges |
| 131 | +``` |
0 commit comments