forked from microsoft/Deep3DFaceReconstruction
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
137 lines (103 loc) · 4.28 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import numpy as np
import tensorflow as tf
from PIL import Image
from scipy.io import loadmat,savemat
from array import array
# load expression basis
def LoadExpBasis():
n_vertex = 53215
Expbin = open('BFM/Exp_Pca.bin','rb')
exp_dim = array('i')
exp_dim.fromfile(Expbin,1)
expMU = array('f')
expPC = array('f')
expMU.fromfile(Expbin,3*n_vertex)
expPC.fromfile(Expbin,3*exp_dim[0]*n_vertex)
expPC = np.array(expPC)
expPC = np.reshape(expPC,[exp_dim[0],-1])
expPC = np.transpose(expPC)
expEV = np.loadtxt('BFM/std_exp.txt')
return expPC,expEV
# transfer original BFM09 to our face model
def transferBFM09():
original_BFM = loadmat('BFM/01_MorphableModel.mat')
shapePC = original_BFM['shapePC'] # shape basis
shapeEV = original_BFM['shapeEV'] # corresponding eigen value
shapeMU = original_BFM['shapeMU'] # mean face
texPC = original_BFM['texPC'] # texture basis
texEV = original_BFM['texEV'] # eigen value
texMU = original_BFM['texMU'] # mean texture
expPC,expEV = LoadExpBasis()
# transfer BFM09 to our face model
idBase = shapePC*np.reshape(shapeEV,[-1,199])
idBase = idBase/1e5 # unify the scale to decimeter
idBase = idBase[:,:80] # use only first 80 basis
exBase = expPC*np.reshape(expEV,[-1,79])
exBase = exBase/1e5 # unify the scale to decimeter
exBase = exBase[:,:64] # use only first 64 basis
texBase = texPC*np.reshape(texEV,[-1,199])
texBase = texBase[:,:80] # use only first 80 basis
# our face model is cropped align face landmarks which contains only 35709 vertex.
# original BFM09 contains 53490 vertex, and expression basis provided by JuYong contains 53215 vertex.
# thus we select corresponding vertex to get our face model.
index_exp = loadmat('BFM/BFM_front_idx.mat')
index_exp = index_exp['idx'].astype(np.int32) - 1 #starts from 0 (to 53215)
index_shape = loadmat('BFM/BFM_exp_idx.mat')
index_shape = index_shape['trimIndex'].astype(np.int32) - 1 #starts from 0 (to 53490)
index_shape = index_shape[index_exp]
idBase = np.reshape(idBase,[-1,3,80])
idBase = idBase[index_shape,:,:]
idBase = np.reshape(idBase,[-1,80])
texBase = np.reshape(texBase,[-1,3,80])
texBase = texBase[index_shape,:,:]
texBase = np.reshape(texBase,[-1,80])
exBase = np.reshape(exBase,[-1,3,64])
exBase = exBase[index_exp,:,:]
exBase = np.reshape(exBase,[-1,64])
meanshape = np.reshape(shapeMU,[-1,3])/1e5
meanshape = meanshape[index_shape,:]
meanshape = np.reshape(meanshape,[1,-1])
meantex = np.reshape(texMU,[-1,3])
meantex = meantex[index_shape,:]
meantex = np.reshape(meantex,[1,-1])
# other info contains triangles, region used for computing photometric loss,
# region used for skin texture regularization, and 68 landmarks index etc.
other_info = loadmat('BFM/facemodel_info.mat')
frontmask2_idx = other_info['frontmask2_idx']
skinmask = other_info['skinmask']
keypoints = other_info['keypoints']
point_buf = other_info['point_buf']
tri = other_info['tri']
tri_mask2 = other_info['tri_mask2']
# save our face model
savemat('BFM/BFM_model_front.mat',{'meanshape':meanshape,'meantex':meantex,'idBase':idBase,'exBase':exBase,'texBase':texBase,'tri':tri,'point_buf':point_buf,'tri_mask2':tri_mask2\
,'keypoints':keypoints,'frontmask2_idx':frontmask2_idx,'skinmask':skinmask})
# load landmarks for standard face, which is used for image preprocessing
def load_lm3d():
Lm3D = loadmat('./BFM/similarity_Lm3D_all.mat')
Lm3D = Lm3D['lm']
# calculate 5 facial landmarks using 68 landmarks
lm_idx = np.array([31,37,40,43,46,49,55]) - 1
Lm3D = np.stack([Lm3D[lm_idx[0],:],np.mean(Lm3D[lm_idx[[1,2]],:],0),np.mean(Lm3D[lm_idx[[3,4]],:],0),Lm3D[lm_idx[5],:],Lm3D[lm_idx[6],:]], axis = 0)
Lm3D = Lm3D[[1,2,0,3,4],:]
return Lm3D
# load input images and corresponding 5 landmarks
def load_img(img_path,lm_path):
image = Image.open(img_path)
lm = np.loadtxt(lm_path)
return image,lm
# save 3D face to obj file
def save_obj(path,v,f,c):
with open(path,'w') as file:
for i in range(len(v)):
file.write('v %f %f %f %f %f %f\n'%(v[i,0],v[i,1],v[i,2],c[i,0],c[i,1],c[i,2]))
file.write('\n')
for i in range(len(f)):
file.write('f %d %d %d\n'%(f[i,0],f[i,1],f[i,2]))
file.close()
# load .pb file into tensorflow graph
def load_graph(graph_filename):
with tf.gfile.GFile(graph_filename,'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
return graph_def