forked from bfelbo/DeepMoji
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathencode_texts.py
43 lines (35 loc) · 1.39 KB
/
encode_texts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# -*- coding: utf-8 -*-
""" Use DeepMoji to encode texts into emotional feature vectors.
"""
from __future__ import print_function, division
import example_helper
import json
import csv
import numpy as np
from deepmoji.sentence_tokenizer import SentenceTokenizer
from deepmoji.model_def import deepmoji_feature_encoding
from deepmoji.global_variables import PRETRAINED_PATH, VOCAB_PATH
TEST_SENTENCES = [u'I love mom\'s cooking',
u'I love how you never reply back..',
u'I love cruising with my homies',
u'I love messing with yo mind!!',
u'I love you and now you\'re just gone..',
u'This is shit',
u'This is the shit']
maxlen = 30
batch_size = 32
print('Tokenizing using dictionary from {}'.format(VOCAB_PATH))
with open(VOCAB_PATH, 'r') as f:
vocabulary = json.load(f)
st = SentenceTokenizer(vocabulary, maxlen)
tokenized, _, _ = st.tokenize_sentences(TEST_SENTENCES)
print('Loading model from {}.'.format(PRETRAINED_PATH))
model = deepmoji_feature_encoding(maxlen, PRETRAINED_PATH)
model.summary()
print('Encoding texts..')
encoding = model.predict(tokenized)
print('First 5 dimensions for sentence: {}'.format(TEST_SENTENCES[0]))
print(encoding[0, :5])
# Now you could visualize the encodings to see differences,
# run a logistic regression classifier on top,
# or basically anything you'd like to do.