|
438 | 438 |
|
439 | 439 | > more in computer graphics
|
440 | 440 |
|
441 |
| -1. **High-Quality Single-Shot Capture of Facial Geometry**(TOG2010, ETHZ, Disney) |
| 441 | +- High-Quality Single-Shot Capture of Facial Geometry(TOG2010, ETHZ, Disney) |
442 | 442 |
|
443 | 443 | `cg, high-detail,stereo system, calibration, surface refinement, normal direction, mesoscopic `
|
444 | 444 |
|
445 |
| -2. Multiview Face Capture using Polarized Spherical Gradient Illumination(TOG2011) |
| 445 | +- Multiview Face Capture using Polarized Spherical Gradient Illumination(TOG2011) |
446 | 446 |
|
447 | 447 | `image collecitons`
|
448 | 448 |
|
449 |
| -3. High-Quality Passive Facial Performance Capture using Anchor Frames(SIGGRAPH2011, ETHZ, Disney) |
| 449 | +- High-Quality Passive Facial Performance Capture using Anchor Frames(SIGGRAPH2011, ETHZ, Disney) |
450 | 450 |
|
451 | 451 | `cg, stereo,anchor frame, tracking, mesh progration, physical movement, motion estimation, refinement `
|
452 | 452 |
|
453 |
| -4. Lightweight binocular facial perfor- mance capture under uncontrolled lighting(TOG2012, MPI) |
| 453 | +- Lightweight binocular facial perfor- mance capture under uncontrolled lighting(TOG2012, MPI) |
454 | 454 |
|
455 | 455 | `cg, high-detail, stereo, template,flow,data term, geometry term, smoothness term, mesh tracking, motion refinement, shape refinement, sfs `
|
456 | 456 |
|
457 |
| -5. Reconstructing Detailed Dynamic Face Geometry from Monocular Video(TOG2013, MPI) |
| 457 | +- Reconstructing Detailed Dynamic Face Geometry from Monocular Video(TOG2013, MPI) |
458 | 458 |
|
459 | 459 | `cg, dynamic, high-detail, blend model, sparse correspondence, dense correspondence(appearance matching, LBP), pose estimation , shape refinement, sfs `
|
460 | 460 |
|
461 |
| -6. 3D Shape Regression for Real-time Facial Animation(TOG2013, ZJU) |
| 461 | +- 3D Shape Regression for Real-time Facial Animation(TOG2013, ZJU) |
462 | 462 |
|
463 |
| -7. Real-Time High-Fidelity Facial Performance Capture (TOG2015, ZJU) |
| 463 | +- Real-Time High-Fidelity Facial Performance Capture (TOG2015, ZJU) |
464 | 464 |
|
465 | 465 | `cg, landmarks, optical flow, train a regressor to learn detail `
|
466 | 466 |
|
467 |
| -8. Dynamic 3D Avatar Creation from Hand-held Video Input(TOG2015, EPEL) |
| 467 | +- Dynamic 3D Avatar Creation from Hand-held Video Input(TOG2015, EPEL) |
468 | 468 |
|
469 | 469 | `cg, dynamic, mobile, high-detail, avatar, 3dmm,sparse correspondence, eye mesh, tracking, refinement, sfs, detail map `
|
470 | 470 |
|
471 |
| -9. Reconstruction of Personalized 3D Face Rigs from Monocular Video(TOG2016, MPI) |
| 471 | +- Reconstruction of Personalized 3D Face Rigs from Monocular Video(TOG2016, MPI) |
472 | 472 |
|
473 | 473 | `parametric shape prior, coarse-scale reconstruction, fine-scale(sfs), coase->medium->fine, 3dmm, corrective `
|
474 | 474 |
|
475 |
| -10. Production-Level Facial Performance Capture Using Deep Convolutional Neural Networks(ASCA2017, USC) |
| 475 | +- Production-Level Facial Performance Capture Using Deep Convolutional Neural Networks(ASCA2017, USC) |
476 | 476 |
|
477 |
| -11. Multi-View Stereo on Consistent Face Topology(EG2017, USC) |
| 477 | +- Multi-View Stereo on Consistent Face Topology(EG2017, USC) |
478 | 478 |
|
479 |
| - `cg, high-detail, landmarks, template, pose estimation, refinement` |
| 479 | + `cg, high-detail, landmarks, template, pose estimation, refinement` |
480 | 480 |
|
481 |
| -12. Avatar Digitization From a Single Image For Real-Time Rendering(SIGGRAPH Asia 2017, USC) |
| 481 | +- Avatar Digitization From a Single Image For Real-Time Rendering(SIGGRAPH Asia 2017, USC) |
482 | 482 |
|
483 |
| - `cg, avatar, segmentation, head, hair, 3DMM, landmarks, texture completion ` |
| 483 | + `cg, avatar, segmentation, head, hair, 3DMM, landmarks, texture completion ` |
484 | 484 |
|
485 |
| -13. Learning a model of facial shape and expression from 4D scans(TOG2017, USC, MPI) |
| 485 | +- Learning a model of facial shape and expression from 4D scans(TOG2017, USC, MPI) |
486 | 486 |
|
487 |
| -14. DeepSketch2Face: A Deep Learning Based Sketching System for 3D Face and Caricature Modeling(SIGGRAPH2017) |
| 487 | +- DeepSketch2Face: A Deep Learning Based Sketching System for 3D Face and Caricature Modeling(SIGGRAPH2017) |
488 | 488 |
|
489 |
| -15. High-Fidelity Facial Reflectance and Geometry Inference From an Unconstrained Image(SIGGRAPH2018, USC) |
| 489 | +- High-Fidelity Facial Reflectance and Geometry Inference From an Unconstrained Image(SIGGRAPH2018, USC) |
490 | 490 |
|
491 |
| - |
| 491 | + |
492 | 492 |
|
493 | 493 | ### Texture
|
494 | 494 |
|
495 | 495 | > 3D-aid texture generation/ UV texture completion
|
496 | 496 | > Keys: GAN
|
497 | 497 |
|
498 |
| -1. Face Synthesis from Facial Identity Features(CVPR2017, google) |
| 498 | +- Face Synthesis from Facial Identity Features(CVPR2017, google) |
499 | 499 |
|
500 | 500 | `3dmm, dl, landmarks`
|
501 | 501 |
|
502 |
| -2. Photorealistic Facial Texture Inference Using Deep Neural Networks(CVPR2017, Hao Li, USC) |
| 502 | +- Photorealistic Facial Texture Inference Using Deep Neural Networks(CVPR2017, Hao Li, USC) |
503 | 503 |
|
504 | 504 | `texture completion`
|
505 | 505 |
|
506 |
| -3. UV-GAN: Adversarial Facial UV Map Completion for Pose-invariant Face Recognition(CVPR2018, SZ, ICL) |
| 506 | +- UV-GAN: Adversarial Facial UV Map Completion for Pose-invariant Face Recognition(CVPR2018, SZ, ICL) |
507 | 507 |
|
508 | 508 | `gan, 3dmm, uv texture completion`
|
509 | 509 |
|
510 |
| -4. Multi-Attribute Robust Component Analysis for Facial UV Maps(2017, SZ, ICL) |
| 510 | +- Multi-Attribute Robust Component Analysis for Facial UV Maps(2017, SZ, ICL) |
511 | 511 |
|
512 |
| -5. Realistic Dynamic Facial Textures from a Single Image using GANs(CVPR2017, Hao Li, USC, DeepMind) |
| 512 | +- Realistic Dynamic Facial Textures from a Single Image using GANs(CVPR2017, Hao Li, USC, DeepMind) |
513 | 513 |
|
514 |
| -6. Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model(2018) |
| 514 | +- Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model(2018) |
515 | 515 |
|
516 |
| -7. Side Information for Face Completion: a Robust PCA Approach(20180120, SZ, ICL) |
| 516 | +- Side Information for Face Completion: a Robust PCA Approach(20180120, SZ, ICL) |
517 | 517 |
|
518 | 518 |
|
519 | 519 |
|
520 | 520 | ### Transfer&Reenactment(Applications)
|
521 | 521 |
|
522 |
| -1. Face Transfer with Multilinear Models (SIGGRAPH2005) |
| 522 | +- Face Transfer with Multilinear Models (SIGGRAPH2005) |
523 | 523 |
|
524 | 524 | `Cartesian product(ID x EX x VI)`
|
525 | 525 |
|
526 |
| -2. Online Modeling For Realtime Facial Animation(TOG2013) |
| 526 | +- Online Modeling For Realtime Facial Animation(TOG2013) |
527 | 527 |
|
528 | 528 | `rgbd, blendshape, corrective field `
|
529 | 529 |
|
530 |
| -3. Displaced Dynamic Expression Regression for Real-time Facial Tracking and Animation(SIGGRAPH2014) |
| 530 | +- Displaced Dynamic Expression Regression for Real-time Facial Tracking and Animation(SIGGRAPH2014) |
531 | 531 |
|
532 |
| -4. Real-time Expression Transfer for Facial Reenactment(SIGGRAPH AISA 2015) |
| 532 | +- Real-time Expression Transfer for Facial Reenactment(SIGGRAPH AISA 2015) |
533 | 533 |
|
534 |
| -5. Face2Face: Real-time Face Capture and Reenactment of RGB Videos(CVPR2016) |
| 534 | +- Face2Face: Real-time Face Capture and Reenactment of RGB Videos(CVPR2016) |
535 | 535 |
|
536 | 536 | `capture, transfer, 3dmm, landmarks, texture, expression, mouth retrieval `
|
537 | 537 |
|
538 |
| -6. Synthesizing Obama: Learning Lip Sync from Audio(SIGGRAPH2017) |
| 538 | +- Synthesizing Obama: Learning Lip Sync from Audio(SIGGRAPH2017) |
539 | 539 |
|
540 |
| -7. Deep Video Portrait(SIGGRAPH2018) |
| 540 | +- Deep Video Portrait(SIGGRAPH2018) |
541 | 541 |
|
542 |
| -8. HeadOn: Real-time Reenactment of Human Portrait Videos(SIGGRAPH2018) |
| 542 | +- HeadOn: Real-time Reenactment of Human Portrait Videos(SIGGRAPH2018) |
543 | 543 |
|
544 | 544 |
|
545 | 545 |
|
546 | 546 | ### 3D-aid 2D face recognition
|
547 | 547 |
|
548 |
| -1. Tom-vs-Pete Classifiers and Identity-Preserving Alignment for Face Verification(ECCV2012, Columbia University) |
| 548 | +- Tom-vs-Pete Classifiers and Identity-Preserving Alignment for Face Verification(ECCV2012, Columbia University) |
549 | 549 |
|
550 |
| -2. Face Recognition from a Single Training Image under Arbitrary Unknown Lighting Using Spherical Harmonics(PAMI2006) |
| 550 | +- Face Recognition from a Single Training Image under Arbitrary Unknown Lighting Using Spherical Harmonics(PAMI2006) |
551 | 551 |
|
552 |
| -3. 3D-aided face recognition robust to expression and pose variations (CVPR2014) |
| 552 | +- 3D-aided face recognition robust to expression and pose variations (CVPR2014) |
553 | 553 |
|
554 |
| -4. Effective 3D based Frontalization for Unconstrained Face Recognition(ICPR2016, MICC, Florence) |
| 554 | +- Effective 3D based Frontalization for Unconstrained Face Recognition(ICPR2016, MICC, Florence) |
555 | 555 |
|
556 |
| -5. Effective Face Frontalization in Unconstrained Images(CVPR2015, TH, Israel) |
| 556 | +- Effective Face Frontalization in Unconstrained Images(CVPR2015, TH, Israel) |
557 | 557 |
|
558 |
| -6. Do We Really Need to Collect Millions of Faces for Effective Face Recognition(ECCV2016, TH, USC, Israel) |
| 558 | +- Do We Really Need to Collect Millions of Faces for Effective Face Recognition(ECCV2016, TH, USC, Israel) |
559 | 559 |
|
560 |
| -7. High-Fidelity Pose and Expression Normalization for Face Recognition in the Wild(CVPR2015) |
| 560 | +- High-Fidelity Pose and Expression Normalization for Face Recognition in the Wild(CVPR2015) |
561 | 561 |
|
562 |
| -8. When 3D-Aided 2D Face Recognition Meets Deep Learning: An extended UR2D for Pose-Invariant Face Recognition(2017) |
| 562 | +- When 3D-Aided 2D Face Recognition Meets Deep Learning: An extended UR2D for Pose-Invariant Face Recognition(2017) |
563 | 563 |
|
564 |
| -9. Towards Large-Pose Face Frontalization in the Wild |
| 564 | +- Towards Large-Pose Face Frontalization in the Wild |
| 565 | + |
| 566 | +- Fully Automatic Pose-Invariant Face Recognition via 3D Pose Normalization (ICCV2011, Cambridge, MA, USA) |
565 | 567 |
|
566 |
| -10. Fully Automatic Pose-Invariant Face Recognition via 3D Pose Normalization (ICCV2011, Cambridge, MA, USA) |
567 | 568 |
|
568 | 569 |
|
569 |
| - |
570 | 570 |
|
571 | 571 | ### 3D face recognition
|
572 | 572 |
|
573 |
| -1. Face Identification across Different Poses and Illuminations with a 3D Morphable Model(Automatic Face and Gesture Recognition2002, VB&TV) |
| 573 | +- Face Identification across Different Poses and Illuminations with a 3D Morphable Model(Automatic Face and Gesture Recognition2002, VB&TV) |
574 | 574 |
|
575 |
| -2. Preliminary Face Recognition Grand Challenge Results(2006) |
| 575 | +- Preliminary Face Recognition Grand Challenge Results(2006) |
576 | 576 |
|
577 |
| -3. expression Invariant 3D Face Recognition with a Morphable Model(FG2008, TV, Basel) |
| 577 | +- expression Invariant 3D Face Recognition with a Morphable Model(FG2008, TV, Basel) |
578 | 578 |
|
579 |
| -4. Bosphorus Database for 3D Face Analysis(2008)[data]() |
| 579 | +- Bosphorus Database for 3D Face Analysis(2008)[data]() |
580 | 580 |
|
581 |
| -5. Robust Learning from Normals for 3D face recognition(ECCV2012, SZ, ICL) |
| 581 | +- Robust Learning from Normals for 3D face recognition(ECCV2012, SZ, ICL) |
582 | 582 |
|
583 |
| -6. Static and dynamic 3D facial expression recognition: A comprehensive survey(IVC2012, SZ, LijunYin) |
| 583 | +- Static and dynamic 3D facial expression recognition: A comprehensive survey(IVC2012, SZ, LijunYin) |
584 | 584 |
|
585 |
| -7. Deep 3D Face Identification(2017, USC) |
| 585 | +- Deep 3D Face Identification(2017, USC) |
586 | 586 |
|
587 |
| -8. Robust Face Recognition with Deeply Normalized Depth Images (2018) |
| 587 | +- Robust Face Recognition with Deeply Normalized Depth Images (2018) |
588 | 588 |
|
589 | 589 | `depth image(front&neural)`
|
590 | 590 |
|
591 |
| -9. Learning from Millions of 3D Scans for Large-scale 3D Face Recognition(CVPR2018, Western Australia) |
| 591 | +- Learning from Millions of 3D Scans for Large-scale 3D Face Recognition(CVPR2018, Western Australia) |
592 | 592 |
|
0 commit comments