forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathClause.rkt
333 lines (298 loc) · 11.7 KB
/
Clause.rkt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
#lang racket/base
;**************************************************************************************;
;**** Clause: Clauses With Additional Properties In A Struct ****;
;**************************************************************************************;
(require define2
define2/define-wrapper
racket/format
racket/list
racket/string
satore/clause
satore/clause-format
satore/misc
satore/unification
text-table)
(provide (all-defined-out))
;==============;
;=== Clause ===;
;==============;
;; TODO: A lot of space is wasted in Clause (boolean flags?)
;; TODO: What's the best way to gain space without losing time or readability?
;; idx : exact-nonnegative-integer? ; unique id of the Clause.
;; parents : (listof Clause?) ; The first parent is the 'mother'.
;; clause : clause? ; the list of literals.
;; type : symbol? ; How the Clause was generated (loaded from file, input clause, rewrite, resolution,
;; factor, etc.)
;; binary-rewrite-rule? : boolean? ; Initially #false, set to #true if the clause has been added
;; (at some point) to the binary rewrite rules (but may not be in the set anymore if subsumed).
;; candidate? : boolean? ; Whether the clause is currently a candidate (see `saturation` in
;; saturation.rkt).
;; discarded? : boolean? ; whether the Clause has been discarded (see `saturation` in saturation.rkt).
;; n-literals : exact-nonnegative-integer? ; number of literals in the clause.
;; size : number? ; tree-size of the clause.
;; depth : exact-nonnegative-integer? : Number of parents up to the input clauses, when following
;; resolutions and factorings.
;; cost : number? ; Used to sort Clauses in `saturation` (in saturation.rkt).
(struct Clause (idx
parents
clause
type
[binary-rewrite-rule? #:mutable]
[candidate? #:mutable]
[discarded? #:mutable]
n-literals
size
depth
[cost #:mutable])
#:prefab)
;; Unique clause index. No two Clauses should have the same index.
(define-counter clause-index 0)
;; Clause constructor. See the struct Clause for more information.
;;
;; parents : (listof Clause?)
;; candidate? : boolean?
;; n-literals : exact-nonnegative-integer?
;; size : number?
;; depth : exact-nonnegative-integer?
(define (make-Clause cl
[parents '()]
#:? [type '?]
#:? [candidate? #false]
#:? [n-literals (length cl)]
#:? [size (clause-size cl)]
#:? [depth (if (empty? parents) 1 (+ 1 (Clause-depth (first parents))))])
(++clause-index)
(when-debug>= steps
(define cl2 (clause-normalize cl)) ; costly, hence done only in debug mode
(unless (= (tree-size cl) (tree-size cl2))
(displayln "Assertion failed: clause is in normal form")
(printf "Clause (type: ~a):\n~a\n" type (clause->string cl))
(displayln "Parents:")
(print-Clauses parents)
(error (format "Assertion failed: (= (tree-size cl) (tree-size cl2)): ~a ~a"
(tree-size cl) (tree-size cl2)))))
; Notice: Variables are ASSUMED freshed. Freshing is not performed here.
(Clause clause-index
parents
cl
type
#false ; binary-rewrite-rule
candidate?
#false ; discarded?
n-literals
size
depth ; depth (C0 is of depth 0, axioms are of depth 1)
0. ; cost
))
;; Sets the Clause as discarded. Used in `saturation`.
;;
;; Clause? -> void?
(define (discard-Clause! C) (set-Clause-discarded?! C #true))
;; A tautological clause used for as parent of the converse of a unit Clause.
(define true-Clause (make-Clause (list ltrue)))
;; Returns a converse Clause of a unit or binary Clause.
;; These are meant to be temporary.
;;
;; C : Clause?
;; candidate? : boolean?
;; -> Clause?
(define (make-converse-Clause C #:? [candidate? #false])
(if (unit-Clause? C)
true-Clause ; If C has 1 literal A, then C = A | false, and converse is ~A | true = true
(make-Clause (fresh (clause-converse (Clause-clause C)))
(list C)
#:type 'converse
#:candidate? candidate?)))
;; List of possible fields for output formatting.
(define Clause->string-all-fields '(idx parents clause type binary-rw? depth size cost))
;; Returns a tree representation of the Clause, for human reading.
;; If what is a list, each element is printed (possibly multiple times).
;; If what is 'all, all fields are printed.
;;
;; Clause? (or/c 'all (listof symbol?)) -> list?
(define (Clause->list C [what '(idx parents clause)])
(when (eq? what 'all)
(set! what Clause->string-all-fields))
(for/list ([w (in-list what)])
(case w
[(idx) (~a (Clause-idx C))]
[(parents) (~a (map Clause-idx (Clause-parents C)))]
[(clause) (clause->string (Clause-clause C))]
[(clause-pretty) (clause->string/pretty (Clause-clause C))]
[(type) (~a (Clause-type C))]
[(binary-rw?) (~a (Clause-binary-rewrite-rule? C))]
[(depth) (~r (Clause-depth C))]
[(size) (~r (Clause-size C))]
[(cost) (~r2 (Clause-cost C))])))
;; Returns a string representation of a Clause.
;;
;; Clause? (or/c 'all (listof symbol?)) -> string?
(define (Clause->string C [what '(idx parents clause)])
(string-join (Clause->list C what) " "))
;; Returns a string representation of a Clause, for displaying a single Clause.
;;
;; Clause? (listof symbol?) -> string?
(define (Clause->string/alone C [what '(idx parents clause)])
(when (eq? what 'all)
(set! what Clause->string-all-fields))
(string-join (map (λ (f w) (format "~a: ~a " w f))
(Clause->list C what)
what)
" "))
;; Outputs the Clauses `Cs` in a table for human reading.
;;
;; (listof Clause?) (or/c 'all (listof symbol?)) -> void?
(define (print-Clauses Cs [what '(idx parents clause)])
(when (eq? what 'all)
(set! what Clause->string-all-fields))
(print-simple-table
(cons what
(map (λ (C) (Clause->list C what)) Cs))))
;; Returns a substitution if C1 subsumes C2 and the number of literals of C1 is no larger
;; than that of C2, #false otherwise.
;; Indeed, even when the clauses are safely factored, there can still be issues, for example,
;; this prevents cases infinite chains such as:
;; p(A, A) subsumed by p(A, B) | p(B, A) subsumed by p(A, B) | p(B, C) | p(C, A) subsumed by…
;; Notice: This is an approximation of the correct subsumption based on multisets.
;;
;; Clause? Clause? -> (or/c #false subst?)
(define (Clause-subsumes C1 C2)
(and (<= (Clause-n-literals C1) (Clause-n-literals C2))
(clause-subsumes (Clause-clause C1) (Clause-clause C2))))
;; Like Clause-subsumes but first takes the converse of C1.
;; Useful for rewrite rules.
;;
;; Clause? Clause? -> (or/c #false subst?)
(define (Clause-converse-subsumes C1 C2)
(and (<= (Clause-n-literals C1) (Clause-n-literals C2))
(clause-subsumes (clause-converse (Clause-clause C1))
(Clause-clause C2))))
;; Clause? -> boolean?
(define (unit-Clause? C)
(= 1 (Clause-n-literals C)))
;; Clause? -> boolean?
(define (binary-Clause? C)
(= 2 (Clause-n-literals C)))
;; Clause? -> boolean?
(define (Clause-tautology? C)
(clause-tautology? (Clause-clause C)))
;; Returns whether C1 and C2 are α-equivalences, that is,
;; if there exists a renaming substitution α such that C1α = C2
;; and C2α⁻¹ = C1.
;;
;; Clause? Clause? -> boolean?
(define (Clause-equivalence? C1 C2)
(and (Clause-subsumes C1 C2)
(Clause-subsumes C2 C1)))
;================;
;=== Printing ===;
;================;
;; Returns the tree of ancestor Clauses of C up to init Clauses,
;; but each Clause appears only once in the tree.
;; (The full tree can be further retrieved from the Clause-parents.)
;; Used for proofs.
;;
;; C : Clause?
;; dmax : number?
;; -> (treeof Clause?)
(define (Clause-ancestor-graph C #:depth [dmax +inf.0])
(define h (make-hasheq))
(let loop ([C C] [depth 0])
(cond
[(or (> depth dmax)
(hash-has-key? h C))
#false]
[else
(hash-set! h C #true)
(cons C (filter-map (λ (C2) (loop C2 (+ depth 1)))
(Clause-parents C)))])))
;; Like `Clause-ancestor-graph` but represented as a string for printing.
;;
;; C : Clause?
;; prefix : string? ; a prefix before each line
;; tab : string? ; tabulation string to show the tree-like structure
;; what : (or/c 'all (listof symbol?)) ; see `Clause->string`
;; -> string?
(define (Clause-ancestor-graph-string C
#:? [depth +inf.0]
#:? [prefix ""]
#:? [tab " "]
#:? [what '(idx parents type clause)])
(define h (make-hasheq))
(define str-out "")
(let loop ([C C] [d 0])
(unless (or (> d depth)
(hash-has-key? h C))
(set! str-out (string-append str-out
prefix
(string-append* (make-list d tab))
(Clause->string C what)
"\n"))
(hash-set! h C #true)
(for ([P (in-list (Clause-parents C))])
(loop P (+ d 1)))))
str-out)
;; Like `Clause-ancestor-graph-string` but directly outputs it.
(define-wrapper (display-Clause-ancestor-graph
(Clause-ancestor-graph-string C #:? depth #:? prefix #:? tab #:? what))
#:call-wrapped call
(display (call)))
;; Returns #true if C1 was generated before C2
;;
;; Clause? Clause? -> boolean?
(define (Clause-age>= C1 C2)
(<= (Clause-idx C1) (Clause-idx C2)))
;=================;
;=== Save/load ===;
;=================;
;; Saves the Clauses `Cs` to the file `f`.
;;
;; Cs : (listof Clause?)
;; f : file?
;; exists : symbol? ; see `with-output-to-file`
;; -> void?
(define (save-Clauses! Cs f #:? exists)
(save-clauses! (map Clause-clause Cs) f #:exists exists))
;; Loads Clauses from a file. If `sort?` is not #false, Clauses are sorted by Clause-size.
;; The type defaults to `'load` and can be changed with `type`.
;;
;; f : file?
;; sort? : boolean?
;; type : symbol?
;; -> (listof Clause?)
(define (load-Clauses f #:? [sort? #true] #:? [type 'load])
(define Cs (map (λ (c) (make-Clause c #:type type))
(load-clauses f)))
(if sort?
(sort Cs <= #:key Clause-size)
Cs))
;======================;
;=== Test utilities ===;
;======================;
;; Provides testing utilities. Use with `(require (submod satore/Clause test))`.
(module+ test
(require rackunit)
(provide Clausify
check-Clause-set-equivalent?)
;; Takes a symbol tree, turns symbol variables into actual `Var`s, freshes them,
;; sorts the literals and makes a new Clause.
;;
;; tree? -> Clause?
(define Clausify (compose make-Clause clausify))
;; Returns whether for every clause of Cs1 there is an α-equivalent clause in Cs2.
;;
;; (listof Clause?) (listof Clause?) -> any/c
(define-check (check-Clause-set-equivalent? Cs1 Cs2)
(unless (= (length Cs1) (length Cs2))
(fail-check "not ="))
(for/fold ([Cs2 Cs2])
([C1 (in-list Cs1)])
(define C1b
(for/first ([C2 (in-list Cs2)] #:when (Clause-equivalence? C1 C2))
C2))
(unless C1b
(printf "Cannot find equivalence Clause for ~a\n" (Clause->string C1))
(print-Clauses Cs1)
(print-Clauses Cs2)
(fail-check))
(remq C1b Cs2))))