Skip to content

Latest commit

 

History

History

msmarco-rankllama

PECOS XMR Reranker on MS-Marco Dataset

This is an example of PECOS-based RankingModel that reproduced the RankLlaMA paper.

How to run

Training

torchrun --nnodes 1 --nproc-per-node 8 \
    -m pecos.xmr.reranker.train \
    --config_json_path ./msmarco_qwen2-7B.train.json

Predictions

python -m pecos.xmr.reranker.predict \
    --config_json_path ./msmarco_qwen2-7B.pred.json

Evaluation

We first convert the predictions from parquet to TREC format:

python -u parquet_to_trec_eval.py -i inference_outputs/ms_marco/qwen2-7B -o inference_outputs/ms_marco/qwen2-7B.pred.trec

We then follow Pyserini evaluation protocol to eval the NDCG@10, and you should see the results like:

python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 dl19-passage inference_outputs/ms_marco/qwen2-7B.pred.trec 

Results:
ndcg_cut_10             all     0.7619