forked from cdcseacave/openMVS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRay.inl
1003 lines (883 loc) · 27.8 KB
/
Ray.inl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
////////////////////////////////////////////////////////////////////
// Ray.inl
//
// Copyright 2007 cDc@seacave
// Distributed under the Boost Software License, Version 1.0
// (See http://www.boost.org/LICENSE_1_0.txt)
// D E F I N E S ///////////////////////////////////////////////////
// S T R U C T S ///////////////////////////////////////////////////
template <typename TYPE, int DIMS>
inline TTriangle<TYPE,DIMS>::TTriangle(const POINT& p0, const POINT& p1, const POINT& p2)
:
a(p0), b(p1), c(p2)
{
} // constructors
/*----------------------------------------------------------------*/
// set attributes
template <typename TYPE, int DIMS>
inline void TTriangle<TYPE,DIMS>::Set(const POINT& p0, const POINT& p1, const POINT& p2)
{
a = p0;
b = p1;
c = p2;
}
/*----------------------------------------------------------------*/
// get AABB
template <typename TYPE, int DIMS>
inline typename TTriangle<TYPE,DIMS>::AABB TTriangle<TYPE,DIMS>::GetAABB() const
{
return AABB(& operator [] (0), 3);
}
// get plane
template <typename TYPE, int DIMS>
inline typename TTriangle<TYPE,DIMS>::PLANE TTriangle<TYPE,DIMS>::GetPlane() const
{
return PLANE(a, b, c);
}
/*----------------------------------------------------------------*/
// S T R U C T S ///////////////////////////////////////////////////
template <typename TYPE, int DIMS>
inline TRay<TYPE,DIMS>::TRay(const POINT& pOrig, const VECTOR& vDir)
:
m_vDir(vDir), m_pOrig(pOrig)
{
ASSERT(ISEQUAL(m_vDir.squaredNorm(), TYPE(1)));
} // constructors
template <typename TYPE, int DIMS>
inline TRay<TYPE,DIMS>::TRay(const POINT& pt0, const POINT& pt1, bool /*bPoints*/)
:
m_vDir((pt1-pt0).normalized()), m_pOrig(pt0)
{
} // constructors
/*----------------------------------------------------------------*/
// set attributes
template <typename TYPE, int DIMS>
inline void TRay<TYPE,DIMS>::Set(const POINT& pOrig, const VECTOR& vDir)
{
m_vDir = vDir;
m_pOrig = pOrig;
ASSERT(ISEQUAL(m_vDir.squaredNorm(), TYPE(1)));
}
template <typename TYPE, int DIMS>
inline void TRay<TYPE,DIMS>::SetFromPoints(const POINT& pt0, const POINT& pt1)
{
m_vDir = (pt1-pt0).normalized();
m_pOrig = pt0;
}
template <typename TYPE, int DIMS>
inline TYPE TRay<TYPE,DIMS>::SetFromPointsLen(const POINT& pt0, const POINT& pt1)
{
m_vDir = pt1-pt0;
const TYPE len = m_vDir.norm();
if (len > TYPE(0))
m_vDir *= TYPE(1)/len;
m_pOrig = pt0;
return len;
}
/*----------------------------------------------------------------*/
// transform ray into matrix space
template <typename TYPE, int DIMS>
inline void TRay<TYPE,DIMS>::DeTransform(const MATRIX& _m)
{
STATIC_ASSERT(DIMS == 3);
MATRIX m(_m);
// invert translation
typedef Eigen::Matrix<TYPE,4,1> VECTOR4;
const VECTOR4 vcOrig(m_pOrig[0]-m(3,0), m_pOrig[1]-m(3,1), m_pOrig[2]-m(3,2));
// delete it from matrix
m(3,0) = m(3,1) = m(3,2) = TYPE(0);
// invert matrix and apply to ray
const MATRIX mInv = m.inverse();
m_pOrig = vcOrig * mInv;
m_vDir = VECTOR4(m_vDir) * mInv;
}
/*----------------------------------------------------------------*/
// Transform the ray by a matrix.
template <typename TYPE, int DIMS>
TRay<TYPE,DIMS> TRay<TYPE,DIMS>::operator*(const MATRIX& m) const
{
TRay ray;
ray.SetFromPoints(m_pOrig*m, (m_pOrig+m_vDir)*m);
return ray;
} // operator *
template <typename TYPE, int DIMS>
inline TRay<TYPE,DIMS>& TRay<TYPE,DIMS>::operator*=(const MATRIX& m)
{
*this = operator * (m);
return *this;
} // operator *=
/*----------------------------------------------------------------*/
// test for intersection with triangle
template <typename TYPE, int DIMS>
template <bool bCull>
bool TRay<TYPE,DIMS>::Intersects(const TRIANGLE& tri, TYPE *t) const
{
const VECTOR edge1(tri.b - tri.a);
const VECTOR edge2(tri.c - tri.a);
// if close to 0 ray is parallel
const VECTOR pvec(m_vDir.cross(edge2));
const TYPE det(edge1.dot(pvec));
if ((bCull && (det < ZEROTOLERANCE<TYPE>())) || ISZERO(det))
return false;
// distance to plane, < 0 means beyond plane
const VECTOR tvec(m_pOrig - tri.a);
const TYPE u(tvec.dot(pvec));
if (u < TYPE(0) || u > det)
return false;
const VECTOR qvec(tvec.cross(edge1));
const TYPE v(m_vDir.dot(qvec));
if (v < TYPE(0) || u+v > det)
return false;
if (t)
*t = (edge2.dot(qvec)) / det;
return true;
} // Intersects(Tri)
/*----------------------------------------------------------------*/
// test for intersection with triangle at certain length (line segment),
// same as above but test distance to intersection vs segment length.
template <typename TYPE, int DIMS>
template <bool bCull>
bool TRay<TYPE,DIMS>::Intersects(const TRIANGLE& tri, TYPE fL, TYPE *t) const
{
const VECTOR edge1(tri.b - tri.a);
const VECTOR edge2(tri.c - tri.a);
// if close to 0 ray is parallel
const VECTOR pvec(m_vDir.cross(edge2));
const TYPE det(edge1.dot(pvec));
if ((bCull && (det < ZEROTOLERANCE<TYPE>())) || ISZERO(det))
return false;
// distance to plane, < 0 means beyond plane
const VECTOR tvec(m_pOrig - tri.a);
const TYPE u(tvec.dot(pvec));
if (u < TYPE(0) || u > det)
return false;
const VECTOR qvec(tvec.cross(edge1));
const TYPE v(m_vDir.dot(qvec));
if (v < TYPE(0) || u+v > det)
return false;
if (t) {
*t = (edge2.dot(qvec)) / det;
// collision but not on segment?
if (*t > fL) return false;
}
else {
// collision but not on segment?
if ((edge2.dot(qvec)) / det > fL) return false;
}
return true;
} // Intersects(Tri at length)
/*----------------------------------------------------------------*/
// test for intersection with triangle
template <typename TYPE, int DIMS>
bool TRay<TYPE,DIMS>::Intersects(const POINT& p0, const POINT& p1, const POINT& p2, bool bCull, TYPE *t) const
{
const VECTOR edge1(p1 - p0);
const VECTOR edge2(p2 - p0);
// if close to 0 ray is parallel
const VECTOR pvec = m_vDir.cross(edge2);
const TYPE det = edge1.dot(pvec);
if ((bCull && (det < ZEROTOLERANCE<TYPE>())) || ISZERO(det))
return false;
// distance to plane, < 0 means beyond plane
const VECTOR tvec = m_pOrig - p0;
const TYPE u = tvec * pvec;
if (u < TYPE(0) || u > det)
return false;
const VECTOR qvec = tvec.cross(edge1);
const TYPE v = m_vDir.dot(qvec);
if (v < TYPE(0) || u+v > det)
return false;
if (t)
*t = (edge2.dot(qvec)) / det;
return true;
} // Intersects(Tri)
/*----------------------------------------------------------------*/
// test for intersection with triangle at certain length (line segment),
// same as above but test distance to intersection vs segment length.
template <typename TYPE, int DIMS>
bool TRay<TYPE,DIMS>::Intersects(const POINT& p0, const POINT& p1, const POINT& p2, bool bCull, TYPE fL, TYPE *t) const
{
const VECTOR edge1(p1 - p0);
const VECTOR edge2(p2 - p0);
// if close to 0 ray is parallel
const VECTOR pvec = m_vDir.cross(edge2);
const TYPE det = edge1.dot(pvec);
if ((bCull && (det < ZEROTOLERANCE<TYPE>())) || ISZERO(det))
return false;
// distance to plane, < 0 means beyond plane
const VECTOR tvec = m_pOrig - p0;
const TYPE u = tvec.dot(pvec);
if (u < 0.0f || u > det)
return false;
const VECTOR qvec = tvec.cross(edge1);
const TYPE v = m_vDir.dot(qvec);
if (v < TYPE(0) || u+v > det)
return false;
if (t) {
*t = (edge2.dot(qvec)) / det;
// collision but not on segment?
if (*t > fL) return false;
}
else {
// collision but not on segment?
if ((edge2.dot(qvec)) / det > fL) return false;
}
return true;
} // Intersects(Tri at length)
/*----------------------------------------------------------------*/
// test if the ray intersects the given sphere
template <typename TYPE, int DIMS>
bool TRay<TYPE,DIMS>::Intersects(const SPHERE& sphere) const
{
TYPE dSq;
if (!DistanceSq(sphere.center, dSq))
return false;
return dSq <= SQUARE(sphere.radius);
}
// same as above, but returns also the distance on the ray corresponding to the closest point
template <typename TYPE, int DIMS>
bool TRay<TYPE,DIMS>::Intersects(const SPHERE& sphere, TYPE& t) const
{
const VECTOR a(sphere.center - m_pOrig);
t = a.dot(m_vDir);
// point behind the ray origin
if (t < TYPE(0))
return false;
const TYPE dSq((a - m_vDir*t).squaredNorm());
return dSq <= SQUARE(sphere.radius);
} // Intersects(Sphere)
/*----------------------------------------------------------------*/
template <typename TYPE, int DIMS>
bool TRay<TYPE,DIMS>::Intersects(const AABB &aabb) const
{
bool to_infinity = true;
TYPE _min, _max;
// first on x value
if (m_vDir[0] == TYPE(0)) {
if (m_pOrig[0] < aabb.ptMin[0] || m_pOrig[0] > aabb.ptMax[0])
return false; // NO_INTERSECTION
} else {
if (m_vDir[0] > TYPE(0)) {
_min = (aabb.ptMin[0]-m_pOrig[0])/m_vDir[0];
_max = (aabb.ptMax[0]-m_pOrig[0])/m_vDir[0];
} else {
_min = (aabb.ptMax[0]-m_pOrig[0])/m_vDir[0];
_max = (aabb.ptMin[0]-m_pOrig[0])/m_vDir[0];
}
to_infinity = false;
}
// now on y value
if (m_vDir[1] == TYPE(0)) {
if (m_pOrig[1] < aabb.ptMin[1] || m_pOrig[1] > aabb.ptMax[1])
return false; // NO_INTERSECTION
} else {
TYPE newmin, newmax;
if (m_vDir[1] > TYPE(0)) {
newmin = (aabb.ptMin[1]-m_pOrig[1])/m_vDir[1];
newmax = (aabb.ptMax[1]-m_pOrig[1])/m_vDir[1];
} else {
newmin = (aabb.ptMax[1]-m_pOrig[1])/m_vDir[1];
newmax = (aabb.ptMin[1]-m_pOrig[1])/m_vDir[1];
}
#if 0
if (to_infinity) {
_min = newmin;
_max = newmax;
} else {
#else
if (to_infinity)
return true;
{
#endif
if (newmin > _min)
_min = newmin;
if (newmax < _max)
_max = newmax;
if (_max < _min)
return false; // NO_INTERSECTION
}
to_infinity = false;
}
// now on z value
if (DIMS == 3) {
if (m_vDir[2] == TYPE(0)) {
if (m_pOrig[2] < aabb.ptMin[2] || m_pOrig[2] > aabb.ptMax[2])
return false; // NO_INTERSECTION
} else {
TYPE newmin, newmax;
if (m_vDir[2] > TYPE(0)) {
newmin = (aabb.ptMin[2]-m_pOrig[2])/m_vDir[2];
newmax = (aabb.ptMax[2]-m_pOrig[2])/m_vDir[2];
} else {
newmin = (aabb.ptMax[2]-m_pOrig[2])/m_vDir[2];
newmax = (aabb.ptMin[2]-m_pOrig[2])/m_vDir[2];
}
#if 0
if (to_infinity) {
_min = newmin;
_max = newmax;
} else {
#else
if (to_infinity)
return true;
{
#endif
if (newmin > _min)
_min = newmin;
if (newmax < _max)
_max = newmax;
if (_max < _min)
return false; // NO_INTERSECTION
}
to_infinity = false;
}
}
ASSERT(!to_infinity);
#if 0
if (_max < _min)
return true; // POINT_INTERSECTION
#endif
return true; // SEGMENT_INTERSECTION
} // Intersects(AABB)
// test for intersection with aabb, original code by Andrew Woo,
// from "Geometric Tools...", Morgan Kaufmann Publ., 2002
template <typename TYPE, int DIMS>
bool TRay<TYPE,DIMS>::Intersects(const AABB &aabb, TYPE& t) const
{
TYPE t0, t1, tmp;
TYPE tNear(-999999);
TYPE tFar ( 999999);
// first pair of planes
if (ISZERO(m_vDir[0])) {
if ((m_pOrig[0] < aabb.ptMin[0]) ||
(m_pOrig[0] > aabb.ptMax[0]))
return false;
}
t0 = (aabb.ptMin[0] - m_pOrig[0]) / m_vDir[0];
t1 = (aabb.ptMax[0] - m_pOrig[0]) / m_vDir[0];
if (t0 > t1) { tmp=t0; t0=t1; t1=tmp; }
if (t0 > tNear) tNear = t0;
if (t1 < tFar) tFar = t1;
if (tNear > tFar) return false;
if (tFar < TYPE(0)) return false;
// second pair of planes
if (ISZERO(m_vDir[1])) {
if ((m_pOrig[1] < aabb.ptMin[1]) ||
(m_pOrig[1] > aabb.ptMax[1]) )
return false;
}
t0 = (aabb.ptMin[1] - m_pOrig[1]) / m_vDir[1];
t1 = (aabb.ptMax[1] - m_pOrig[1]) / m_vDir[1];
if (t0 > t1) { tmp=t0; t0=t1; t1=tmp; }
if (t0 > tNear) tNear = t0;
if (t1 < tFar) tFar = t1;
if (tNear > tFar) return false;
if (tFar < TYPE(0)) return false;
if (DIMS == 3) {
// third pair of planes
if (ISZERO(m_vDir[2])) {
if ((m_pOrig[2] < aabb.ptMin[2]) ||
(m_pOrig[2] > aabb.ptMax[2]) )
return false;
}
t0 = (aabb.ptMin[2] - m_pOrig[2]) / m_vDir[2];
t1 = (aabb.ptMax[2] - m_pOrig[2]) / m_vDir[2];
if (t0 > t1) { tmp=t0; t0=t1; t1=tmp; }
if (t0 > tNear) tNear = t0;
if (t1 < tFar) tFar = t1;
if (tNear > tFar) return false;
if (tFar < TYPE(0)) return false;
}
t = (tNear > TYPE(0) ? tNear : tFar);
return true;
} // Intersects(AABB)
// test for intersection with aabb, original code by Andrew Woo,
// from "Geometric Tools...", Morgan Kaufmann Publ., 2002
template <typename TYPE, int DIMS>
bool TRay<TYPE,DIMS>::Intersects(const AABB &aabb, TYPE fL, TYPE *t) const
{
TYPE t0, t1, tmp, tFinal;
TYPE tNear(-999999);
TYPE tFar ( 999999);
// first pair of planes
if (ISZERO(m_vDir[0])) {
if ((m_pOrig[0] < aabb.ptMin[0]) ||
(m_pOrig[0] > aabb.ptMax[0]) )
return false;
}
t0 = (aabb.ptMin[0] - m_pOrig[0]) / m_vDir[0];
t1 = (aabb.ptMax[0] - m_pOrig[0]) / m_vDir[0];
if (t0 > t1) { tmp=t0; t0=t1; t1=tmp; }
if (t0 > tNear) tNear = t0;
if (t1 < tFar) tFar = t1;
if (tNear > tFar) return false;
if (tFar < TYPE(0)) return false;
// second pair of planes
if (ISZERO(m_vDir[1])) {
if ((m_pOrig[1] < aabb.ptMin[1]) ||
(m_pOrig[1] > aabb.ptMax[1]) )
return false;
}
t0 = (aabb.ptMin[1] - m_pOrig[1]) / m_vDir[1];
t1 = (aabb.ptMax[1] - m_pOrig[1]) / m_vDir[1];
if (t0 > t1) { tmp=t0; t0=t1; t1=tmp; }
if (t0 > tNear) tNear = t0;
if (t1 < tFar) tFar = t1;
if (tNear > tFar) return false;
if (tFar < TYPE(0)) return false;
if (DIMS == 3) {
// third pair of planes
if (ISZERO(m_vDir[2])) {
if ((m_pOrig[2] < aabb.ptMin[2]) ||
(m_pOrig[2] > aabb.ptMax[2]) )
return false;
}
t0 = (aabb.ptMin[2] - m_pOrig[2]) / m_vDir[2];
t1 = (aabb.ptMax[2] - m_pOrig[2]) / m_vDir[2];
if (t0 > t1) { tmp=t0; t0=t1; t1=tmp; }
if (t0 > tNear) tNear = t0;
if (t1 < tFar) tFar = t1;
if (tNear > tFar) return false;
if (tFar < 0) return false;
}
tFinal = (tNear > TYPE(0) ? tNear : tFar);
if (tFinal > fL) return false;
if (t) *t = tFinal;
return true;
} // Intersects(AABB) at length
/*----------------------------------------------------------------*/
template <typename TYPE, int DIMS>
bool TRay<TYPE,DIMS>::Intersects(const OBB& obb) const
{
TYPE t;
return Intersects(obb, t);
} // Intersects(OBB)
// test for intersection with obb, slaps method
template <typename TYPE, int DIMS>
bool TRay<TYPE,DIMS>::Intersects(const OBB& obb, TYPE& t) const
{
TYPE e, f, t1, t2, temp;
TYPE tmin(-999999);
TYPE tmax( 999999);
const POINT vP = obb.m_pos - m_pOrig;
// 1st slap
e = obb.m_rot.row(0) * vP;
f = obb.m_rot.row(0) * m_vDir;
if (!ISZERO(f)) {
t1 = (e + obb.m_ext[0]) / f;
t2 = (e - obb.m_ext[0]) / f;
if (t1 > t2) { temp=t1; t1=t2; t2=temp; }
if (t1 > tmin) tmin = t1;
if (t2 < tmax) tmax = t2;
if (tmin > tmax) return false;
if (tmax < 0.0f) return false;
} else
if (((-e - obb.m_ext[0]) > 0.0f) || ((-e + obb.m_ext[0]) < 0.0f))
return false;
// 2nd slap
e = obb.m_rot.row(1) * vP;
f = obb.m_rot.row(1) * m_vDir;
if (!ISZERO(f)) {
t1 = (e + obb.m_ext[1]) / f;
t2 = (e - obb.m_ext[1]) / f;
if (t1 > t2) { temp=t1; t1=t2; t2=temp; }
if (t1 > tmin) tmin = t1;
if (t2 < tmax) tmax = t2;
if (tmin > tmax) return false;
if (tmax < 0.0f) return false;
} else
if (((-e - obb.m_ext[1]) > 0.0f) || ((-e + obb.m_ext[1]) < 0.0f))
return false;
// 3rd slap
e = obb.m_rot.row(2) * vP;
f = obb.m_rot.row(2) * m_vDir;
if (!ISZERO(f)) {
t1 = (e + obb.m_ext[2]) / f;
t2 = (e - obb.m_ext[2]) / f;
if (t1 > t2) { temp=t1; t1=t2; t2=temp; }
if (t1 > tmin) tmin = t1;
if (t2 < tmax) tmax = t2;
if (tmin > tmax) return false;
if (tmax < 0.0f) return false;
} else
if (((-e - obb.m_ext[2]) > 0) || ((-e + obb.m_ext[2]) < 0))
return false;
if (tmin > 0) {
if (t) *t = tmin;
return true;
}
t = tmax;
return true;
} // Intersects(AABB)
// test for intersection with obb at certain length (line segment),
// slaps method but compare result if true to length prior return.
template <typename TYPE, int DIMS>
bool TRay<TYPE,DIMS>::Intersects(const OBB& obb, TYPE fL, TYPE *t) const
{
TYPE e, f, t1, t2, temp;
TYPE tmin(-999999);
TYPE tmax( 999999);
const POINT vP = obb.m_pos - m_pOrig;
// 1st slap
e = obb.m_rot.row(0) * vP;
f = obb.m_rot.row(0) * m_vDir;
if (!ISZERO(f)) {
t1 = (e + obb.m_ext[0]) / f;
t2 = (e - obb.m_ext[0]) / f;
if (t1 > t2) { temp=t1; t1=t2; t2=temp; }
if (t1 > tmin) tmin = t1;
if (t2 < tmax) tmax = t2;
if (tmin > tmax) return false;
if (tmax < 0.0f) return false;
} else
if (((-e - obb.m_ext[0]) > 0) || ((-e + obb.m_ext[0]) < 0))
return false;
// 2nd slap
e = obb.m_rot.row(1) * vP;
f = obb.m_rot.row(1) * m_vDir;
if (!ISZERO(f)) {
t1 = (e + obb.m_ext[1]) / f;
t2 = (e - obb.m_ext[1]) / f;
if (t1 > t2) { temp=t1; t1=t2; t2=temp; }
if (t1 > tmin) tmin = t1;
if (t2 < tmax) tmax = t2;
if (tmin > tmax) return false;
if (tmax < 0.0f) return false;
} else
if (((-e - obb.m_ext[1]) > 0) || ((-e + obb.m_ext[1]) < 0))
return false;
// 3rd slap
e = obb.m_rot.row(2) * vP;
f = obb.m_rot.row(2) * m_vDir;
if (!ISZERO(f)) {
t1 = (e + obb.m_ext[2]) / f;
t2 = (e - obb.m_ext[2]) / f;
if (t1 > t2) { temp=t1; t1=t2; t2=temp; }
if (t1 > tmin) tmin = t1;
if (t2 < tmax) tmax = t2;
if (tmin > tmax) return false;
if (tmax < 0.0f) return false;
} else
if (((-e - obb.m_ext[2]) > 0) || ((-e + obb.m_ext[2]) < 0))
return false;
if ((tmin > 0) && (tmin <= fL)) {
if (t) *t = tmin;
return true;
}
// intersection on line but not on segment
if (tmax > fL) return false;
if (t) *t = tmax;
return true;
} // Intersects(AABB) at length
/*----------------------------------------------------------------*/
// Intersection with PLANE from origin till infinity.
template <typename TYPE, int DIMS>
bool TRay<TYPE,DIMS>::Intersects(const PLANE& plane, bool bCull, TYPE *t, POINT* pPtHit) const
{
const TYPE Vd(plane.m_vN.dot(m_vDir));
// ray parallel to plane
if (ISZERO(Vd))
return false;
// normal pointing away from ray dir
// => intersection backface if any
if (bCull && (Vd > TYPE(0)))
return false;
const TYPE Vo(-plane.Distance(m_pOrig));
const TYPE _t(Vo / Vd);
// intersection behind ray origin
if (_t < TYPE(0))
return false;
if (pPtHit)
(*pPtHit) = m_pOrig + (m_vDir * _t);
if (t)
(*t) = _t;
return true;
} // Intersects(PLANE)
// same as above, but no checks
template <typename TYPE, int DIMS>
inline TYPE TRay<TYPE,DIMS>::IntersectsDist(const PLANE& plane) const
{
const TYPE Vd(plane.m_vN.dot(m_vDir));
const TYPE Vo(-plane.Distance(m_pOrig));
return SAFEDIVIDE(Vo, Vd);
} // IntersectsDist(PLANE)
template <typename TYPE, int DIMS>
inline typename TRay<TYPE,DIMS>::POINT TRay<TYPE,DIMS>::Intersects(const PLANE& plane) const
{
return m_pOrig + (m_vDir * IntersectsDist(plane));
} // Intersects(PLANE)
/*----------------------------------------------------------------*/
// Intersection with PLANE at distance fL.
template <typename TYPE, int DIMS>
bool TRay<TYPE,DIMS>::Intersects(const PLANE& plane, bool bCull, TYPE fL, TYPE *t, POINT* pPtHit) const
{
const TYPE Vd = plane.m_vN.dot(m_vDir);
// ray parallel to plane
if (ISZERO(Vd))
return false;
// normal pointing away from ray dir
// => intersection backface if any
if (bCull && (Vd > TYPE(0)))
return false;
const TYPE Vo(-plane.Distance(m_pOrig));
const TYPE _t(Vo / Vd);
// intersection behind ray origin or beyond valid range
if ((_t < TYPE(0)) || (_t > fL))
return false;
if (pPtHit)
(*pPtHit) = m_pOrig + (m_vDir * _t);
if (t)
(*t) = _t;
return true;
} // Intersects(PLANE)
/*----------------------------------------------------------------*/
// Intersection with another ray.
// Rays assumed to be coplanar; returns only the distance from the origin of the first ray.
// P = R.origin + s * R.dir
// http://mathworld.wolfram.com/Line-LineIntersection.html
// (works also for 2D lines if z components is set to 0)
template <typename TYPE, int DIMS>
bool TRay<TYPE,DIMS>::Intersects(const TRay& ray, TYPE& s) const
{
const POINT dir(ray.m_pOrig - m_pOrig);
const POINT n(m_vDir.cross(ray.m_vDir));
if (!ISZERO(dir.dot(n)))
return false; // lines are not coplanar
s = dir.cross(ray.m_vDir).dot(n) / n.squaredNorm();
return true;
} // Intersects(Ray)
// Same as above, but returns the actual intersection point:
template <typename TYPE, int DIMS>
bool TRay<TYPE,DIMS>::Intersects(const TRay& ray, POINT& p) const
{
TYPE s;
if (!Intersects(ray, s))
return false; // lines are not coplanar
if (s < TYPE(0))
return false; // intersection behind ray origin
p = m_pOrig + m_vDir * s;
return true;
} // Intersects(Ray)
// No coplanarity assumption; returns the shortest line segment connecting the two rays:
// P1 = R1.origin + s1 * R1.dir
// P2 = R2.origin + s2 * R2.dir
// http://paulbourke.net/geometry/pointlineplane/
template <typename TYPE, int DIMS>
bool TRay<TYPE,DIMS>::Intersects(const TRay& ray, TYPE& s1, TYPE& s2) const
{
const TYPE d4321(ray.m_vDir.dot(m_vDir));
const TYPE d4343(ray.m_vDir.dot(ray.m_vDir));
const TYPE d2121(m_vDir.dot(m_vDir));
const TYPE denom = d2121 * d4343 - d4321 * d4321;
if (ISZERO(denom))
return false; // lines are parallel
const POINT dir(m_pOrig - ray.m_pOrig);
const TYPE d1321(dir.dot(m_vDir));
const TYPE d1343(dir.dot(ray.m_vDir));
const TYPE numer = d1343 * d4321 - d1321 * d4343;
s1 = numer / denom;
s2 = (d1343 + d4321 * s1) / d4343;
return true;
} // Intersects(Ray)
// Same as above, but returns only middle point of the shortest line segment:
// P = (P1 + P2) / 2
template <typename TYPE, int DIMS>
bool TRay<TYPE,DIMS>::IntersectsAprox(const TRay& ray, POINT& p) const
{
TYPE s1, s2;
if (!Intersects(ray, s1, s2))
return false;
const POINT P1 = m_pOrig + m_vDir * s1;
const POINT P2 = ray.m_pOrig + ray.m_vDir * s2;
p = (P1+P2)*TYPE(0.5);
return true;
} // Intersects(Ray)
// Same as above, but returns the point on the given ray.
// Returns false if intersection not in front of main ray.
template <typename TYPE, int DIMS>
bool TRay<TYPE,DIMS>::IntersectsAprox2(const TRay& ray, POINT& p) const
{
TYPE s1, s2;
if (!Intersects(ray, s1, s2))
return false;
if (s1 < TYPE(0))
return false; // intersection behind main ray origin
p = ray.m_pOrig + ray.m_vDir * s2;
return true;
} // Intersects(Ray)
/*----------------------------------------------------------------*/
// computes the angle between the two lines
template <typename TYPE, int DIMS>
inline TYPE TRay<TYPE,DIMS>::CosAngle(const TRay& ray) const
{
ASSERT(ISEQUAL(m_vDir.norm(), TYPE(1)));
ASSERT(ISEQUAL(ray.m_vDir.norm(), TYPE(1)));
return m_vDir.dot(ray.m_vDir);
}
// tests if the two lines are coplanar (intersect)
template <typename TYPE, int DIMS>
inline bool TRay<TYPE,DIMS>::Coplanar(const TRay& ray) const
{
const POINT dir(ray.m_pOrig - m_pOrig);
const POINT n(m_vDir.cross(ray.m_vDir));
return ISZERO(dir.dot(n));
}
// tests if the two lines are parallel
template <typename TYPE, int DIMS>
inline bool TRay<TYPE,DIMS>::Parallel(const TRay& ray) const
{
return ISZERO(m_vDir.cross(ray.m_vDir).norm());
}
/*----------------------------------------------------------------*/
// Computes the position on the ray of the point projection.
// Returns 0 if it coincides with the ray origin, positive value if in front, and negative if behind.
template <typename TYPE, int DIMS>
inline TYPE TRay<TYPE,DIMS>::Classify(const POINT& pt) const
{
ASSERT(ISEQUAL(m_vDir.norm(), TYPE(1)));
const VECTOR a(pt - m_pOrig);
return a.dot(m_vDir);
} // Classify(POINT)
template <typename TYPE, int DIMS>
inline typename TRay<TYPE,DIMS>::POINT TRay<TYPE,DIMS>::ProjectPoint(const POINT& pt) const
{
ASSERT(ISEQUAL(m_vDir.norm(), TYPE(1)));
return m_pOrig + m_vDir*Classify(pt);
} // ProjectPoint
/*----------------------------------------------------------------*/
// Computes the distance between the ray and a point.
// Returns false if the point is projecting behind the ray origin.
template <typename TYPE, int DIMS>
bool TRay<TYPE,DIMS>::DistanceSq(const POINT& pt, TYPE& d) const
{
const VECTOR a(pt - m_pOrig);
const TYPE LenACos(a.dot(m_vDir));
// point behind the ray origin
if (LenACos < TYPE(0))
return false;
d = (a - m_vDir*LenACos).squaredNorm();
return true;
} // DistanceSq(POINT)
template <typename TYPE, int DIMS>
bool TRay<TYPE,DIMS>::Distance(const POINT& pt, TYPE& d) const
{
const VECTOR a(pt - m_pOrig);
const TYPE LenACos(a.dot(m_vDir));
// point behind the ray origin
if (LenACos < TYPE(0))
return false;
d = (a - m_vDir*LenACos).norm();
return true;
} // Distance(POINT)
// Same as above, but returns the distance even if the point projection is behind the origin.
template <typename TYPE, int DIMS>
TYPE TRay<TYPE,DIMS>::DistanceSq(const POINT& pt) const
{
ASSERT(ISEQUAL(m_vDir.norm(), TYPE(1)));
const VECTOR a(pt - m_pOrig);
const VECTOR b(a - m_vDir);
return b.cross(a).squaredNorm();
} // DistanceSq(POINT)
template <typename TYPE, int DIMS>
TYPE TRay<TYPE,DIMS>::Distance(const POINT& pt) const
{
return SQRT(DistanceSq(pt));
} // Distance(POINT)
/*----------------------------------------------------------------*/
// S T R U C T S ///////////////////////////////////////////////////
template <typename TYPE, int DIMS>
bool TCylinder<TYPE,DIMS>::Intersects(const SPHERE& sphere) const
{
struct Check {
static bool Intersection(const RAY& ray, const SPHERE& sphere, const VECTOR& CmV, TYPE t, TYPE radius, TYPE height) {
const POINT O(ray.m_pOrig + ray.m_vDir * height);
const VECTOR a(sphere.center - O);
if (a.squaredNorm() <= SQUARE(sphere.radius))
return true; // ray origin inside the sphere
const POINT D((CmV - ray.m_vDir * t).normalized());
const TYPE d = a.dot(D);
if (d < TYPE(0))
return false; // intersection behind the ray origin
const TYPE dSq((a - D*d).squaredNorm());
const TYPE srSq = SQUARE(sphere.radius);
if (dSq <= srSq) {
const TYPE r = d - SQRT(srSq-dSq);
ASSERT(r >= TYPE(0));
return r <= radius; // intersection before the ray end
}
return false;
}
};
const VECTOR CmV(sphere.center - ray.m_pOrig);
const TYPE t(ray.m_vDir.dot(CmV));
// sphere projects behind the cylinder origin
if (t < minHeight) {
if (t+sphere.radius < minHeight)
return false;
return Check::Intersection(ray, sphere, CmV, t, radius, minHeight);
}
// sphere projects after the cylinder end
if (t > maxHeight) {
if (t-sphere.radius > maxHeight)
return false;
return Check::Intersection(ray, sphere, CmV, t, radius, maxHeight);
}
const TYPE lenSq((CmV - ray.m_vDir * t).squaredNorm());
return lenSq <= SQUARE(sphere.radius + radius);
} // Intersects
/*----------------------------------------------------------------*/
// Classify point to cylinder.
template <typename TYPE, int DIMS>
GCLASS TCylinder<TYPE,DIMS>::Classify(const POINT& p, TYPE& t) const
{
ASSERT(ISEQUAL(ray.m_vDir.norm(), TYPE(1)));
const VECTOR D(p - ray.m_pOrig);
t = ray.m_vDir.dot(D);
if (t < minHeight) return BACK;
if (t > maxHeight) return FRONT;
const TYPE rSq((D - ray.m_vDir*t).squaredNorm());
const TYPE radiusSq(SQUARE(radius));
if (rSq > radiusSq) return CULLED;
if (rSq < radiusSq) return VISIBLE;
return PLANAR;
} // Classify
/*----------------------------------------------------------------*/
// S T R U C T S ///////////////////////////////////////////////////
template <typename TYPE, int DIMS>
bool TConeIntersect<TYPE,DIMS>::operator()(const SPHERE& sphere) const
{
const VECTOR CmV(sphere.center - cone.ray.m_pOrig);
const VECTOR D(CmV + cone.ray.m_vDir * (sphere.radius*invSinAngle));
TYPE e = D.dot(cone.ray.m_vDir);
if (e <= TYPE(0) || e*e < D.squaredNorm()*cosAngleSq)
return false;
e = CmV.dot(cone.ray.m_vDir);
if (e-sphere.radius > cone.maxHeight)
return false;
if (e < cone.minHeight) {
const TYPE lenSq = CmV.squaredNorm();
if (e*e >= lenSq*sinAngleSq)
return lenSq <= SQUARE(sphere.radius);
}
return true;
} // Intersect
/*----------------------------------------------------------------*/
// Classify point to cone.
template <typename TYPE, int DIMS>
GCLASS TConeIntersect<TYPE,DIMS>::Classify(const POINT& p, TYPE& t) const
{
ASSERT(ISEQUAL(cone.ray.m_vDir.norm(), TYPE(1)));
const VECTOR D(p - cone.ray.m_pOrig);
t = cone.ray.m_vDir.dot(D);
if (ISZERO(t))
return PLANAR;
if (t < cone.minHeight) return BACK;
if (t > cone.maxHeight) return FRONT;
ASSERT(!ISZERO(D.norm()));
const TYPE tSq(SQUARE(t));
const TYPE dSq(cosAngleSq*D.squaredNorm());
if (tSq < dSq) return CULLED;
if (tSq > dSq) return VISIBLE;