forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbernoulli_test.py
215 lines (171 loc) · 7.6 KB
/
bernoulli_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# Lint as: python3
# Copyright 2020 DeepMind Technologies Limited.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for `bernoulli.py`."""
from absl.testing import absltest
from absl.testing import parameterized
import haiku as hk
import jax
import jax.numpy as jnp
import numpy as np
import tree
from gated_linear_networks import bernoulli
def _get_dataset(input_size, batch_size=None):
"""Get mock dataset."""
if batch_size:
inputs = jnp.ones([batch_size, input_size])
side_info = jnp.ones([batch_size, input_size])
targets = jnp.ones([batch_size])
else:
inputs = jnp.ones([input_size])
side_info = jnp.ones([input_size])
targets = jnp.ones([])
return inputs, side_info, targets
class GatedLinearNetworkTest(parameterized.TestCase):
# TODO(b/170843789): Factor out common test utilities.
def setUp(self):
super(GatedLinearNetworkTest, self).setUp()
self._name = "test_network"
self._rng = hk.PRNGSequence(jax.random.PRNGKey(42))
self._output_sizes = (4, 5, 6)
self._context_dim = 2
def gln_factory():
return bernoulli.GatedLinearNetwork(
output_sizes=self._output_sizes,
context_dim=self._context_dim,
name=self._name)
def inference_fn(inputs, side_info):
return gln_factory().inference(inputs, side_info)
def batch_inference_fn(inputs, side_info):
return jax.vmap(inference_fn, in_axes=(0, 0))(inputs, side_info)
def update_fn(inputs, side_info, label, learning_rate):
params, predictions, unused_loss = gln_factory().update(
inputs, side_info, label, learning_rate)
return predictions, params
def batch_update_fn(inputs, side_info, label, learning_rate):
predictions, params = jax.vmap(
update_fn, in_axes=(0, 0, 0, None))(inputs, side_info, label,
learning_rate)
avg_params = tree.map_structure(lambda x: jnp.mean(x, axis=0), params)
return predictions, avg_params
# Haiku transform functions.
self._init_fn, inference_fn_ = hk.without_apply_rng(
hk.transform_with_state(inference_fn))
self._batch_init_fn, batch_inference_fn_ = hk.without_apply_rng(
hk.transform_with_state(batch_inference_fn))
_, update_fn_ = hk.without_apply_rng(hk.transform_with_state(update_fn))
_, batch_update_fn_ = hk.without_apply_rng(
hk.transform_with_state(batch_update_fn))
self._inference_fn = jax.jit(inference_fn_)
self._batch_inference_fn = jax.jit(batch_inference_fn_)
self._update_fn = jax.jit(update_fn_)
self._batch_update_fn = jax.jit(batch_update_fn_)
@parameterized.named_parameters(("Online mode", None), ("Batch mode", 3))
def test_shapes(self, batch_size):
"""Test shapes in online and batch regimes."""
if batch_size is None:
init_fn = self._init_fn
inference_fn = self._inference_fn
else:
init_fn = self._batch_init_fn
inference_fn = self._batch_inference_fn
input_size = 10
inputs, side_info, _ = _get_dataset(input_size, batch_size)
input_size = inputs.shape[-1]
# Initialize network.
gln_params, gln_state = init_fn(next(self._rng), inputs, side_info)
# Test shapes of parameters layer-wise.
layer_input_size = input_size
for layer_idx, output_size in enumerate(self._output_sizes):
name = "{}/~/{}_layer_{}".format(self._name, self._name, layer_idx)
weights = gln_params[name]["weights"]
expected_shape = (output_size, 2**self._context_dim, layer_input_size + 1)
self.assertEqual(weights.shape, expected_shape)
layer_input_size = output_size
# Test shape of output.
output_size = sum(self._output_sizes)
predictions, _ = inference_fn(gln_params, gln_state, inputs, side_info)
expected_shape = (batch_size, output_size) if batch_size else (output_size,)
self.assertEqual(predictions.shape, expected_shape)
@parameterized.named_parameters(("Online mode", None), ("Batch mode", 3))
def test_update(self, batch_size):
"""Test network updates in online and batch regimes."""
if batch_size is None:
init_fn = self._init_fn
inference_fn = self._inference_fn
update_fn = self._update_fn
else:
init_fn = self._batch_init_fn
inference_fn = self._batch_inference_fn
update_fn = self._batch_update_fn
input_size = 10
inputs, side_info, targets = _get_dataset(input_size, batch_size)
# Initialize network.
initial_params, gln_state = init_fn(next(self._rng), inputs, side_info)
# Initial predictions.
initial_predictions, _ = inference_fn(initial_params, gln_state, inputs,
side_info)
# Test that params remain valid after consecutive updates.
gln_params = initial_params
for _ in range(3):
(_, gln_params), gln_state = update_fn(
gln_params, gln_state, inputs, side_info, targets, learning_rate=1e-4)
# Check updated weights layer-wise.
for layer_idx in range(len(self._output_sizes)):
name = "{}/~/{}_layer_{}".format(self._name, self._name, layer_idx)
initial_weights = initial_params[name]["weights"]
new_weights = gln_params[name]["weights"]
# Shape consistency.
self.assertEqual(new_weights.shape, initial_weights.shape)
# Check that different weights yield different predictions.
new_predictions, _ = inference_fn(gln_params, gln_state, inputs,
side_info)
self.assertFalse(np.array_equal(new_predictions, initial_predictions))
def test_batch_consistency(self):
"""Test consistency between online and batch updates."""
input_size = 10
batch_size = 3
inputs, side_info, targets = _get_dataset(input_size, batch_size)
# Initialize network.
gln_params, gln_state = self._batch_init_fn(
next(self._rng), inputs, side_info)
test_layer = "{}/~/{}_layer_0".format(self._name, self._name)
for _ in range(10):
# Update on full batch.
(expected_predictions, expected_params), _ = self._batch_update_fn(
gln_params, gln_state, inputs, side_info, targets, learning_rate=1e-3)
# Average updates across batch and check equivalence.
accum_predictions = []
accum_weights = []
for inputs_, side_info_, targets_ in zip(inputs, side_info, targets):
(predictions, params), _ = self._update_fn(
gln_params,
gln_state,
inputs_,
side_info_,
targets_,
learning_rate=1e-3)
accum_predictions.append(predictions)
accum_weights.append(params[test_layer]["weights"])
# Check prediction equivalence.
actual_predictions = np.stack(accum_predictions, axis=0)
np.testing.assert_array_almost_equal(actual_predictions,
expected_predictions)
# Check weight equivalence.
actual_weights = np.mean(np.stack(accum_weights, axis=0), axis=0)
expected_weights = expected_params[test_layer]["weights"]
np.testing.assert_array_almost_equal(actual_weights, expected_weights)
gln_params = expected_params
if __name__ == "__main__":
absltest.main()