forked from sxyu/svox2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_render_gradcheck.py
126 lines (110 loc) · 4.82 KB
/
test_render_gradcheck.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import svox2
import torch
import torch.nn.functional as F
from util import Timing
torch.random.manual_seed(2)
# torch.random.manual_seed(8289)
device = 'cuda:0'
dtype = torch.float32
grid = svox2.SparseGrid(
reso=128,
center=[0.0, 0.0, 0.0],
radius=[1.0, 1.0, 1.0],
basis_dim=9,
use_z_order=True,
device=device,
background_nlayers=0,
basis_type=svox2.BASIS_TYPE_SH)
grid.opt.backend = 'nvol'
grid.opt.sigma_thresh = 0.0
grid.opt.stop_thresh = 0.0
grid.opt.background_brightness = 1.0
print(grid.sh_data.shape)
# grid.sh_data.data.normal_()
grid.sh_data.data[..., 0] = 0.5
grid.sh_data.data[..., 1:].normal_(std=0.1)
grid.density_data.data[:] = 100.0
if grid.use_background:
grid.background_data.data[..., -1] = 0.5
grid.background_data.data[..., :-1] = torch.randn_like(
grid.background_data.data[..., :-1]) * 0.01
if grid.basis_type == svox2.BASIS_TYPE_3D_TEXTURE:
grid.basis_data.data.normal_()
grid.basis_data.data += 1.0
ENABLE_TORCH_CHECK = True
# N_RAYS = 5000 #200 * 200
N_RAYS = 200 * 200
origins = torch.randn((N_RAYS, 3), device=device, dtype=dtype) * 3
dirs = torch.randn((N_RAYS, 3), device=device, dtype=dtype)
# origins = torch.clip(origins, -0.8, 0.8)
# origins = torch.tensor([[-0.6747068762779236, -0.752697229385376, -0.800000011920929]], device=device, dtype=dtype)
# dirs = torch.tensor([[0.6418760418891907, -0.37417781352996826, 0.6693176627159119]], device=device, dtype=dtype)
dirs /= torch.norm(dirs, dim=-1, keepdim=True)
# start = 71
# end = 72
# origins = origins[start:end]
# dirs = dirs[start:end]
# print(origins.tolist(), dirs.tolist())
# breakpoint()
rays = svox2.Rays(origins, dirs)
rgb_gt = torch.zeros((origins.size(0), 3), device=device, dtype=dtype)
# grid.requires_grad_(True)
# samps = grid.volume_render(rays, use_kernel=True)
# sampt = grid.volume_render(grid, origins, dirs, use_kernel=False)
with Timing("ours"):
samps = grid.volume_render(rays, use_kernel=True)
s = F.mse_loss(samps, rgb_gt)
print(s)
print('bkwd..')
with Timing("ours_backward"):
s.backward()
grid_sh_grad_s = grid.sh_data.grad.clone().cpu()
grid_density_grad_s = grid.density_data.grad.clone().cpu()
grid.sh_data.grad = None
grid.density_data.grad = None
if grid.basis_type == svox2.BASIS_TYPE_3D_TEXTURE:
grid_basis_grad_s = grid.basis_data.grad.clone().cpu()
grid.basis_data.grad = None
if grid.use_background:
grid_bg_grad_s = grid.background_data.grad.clone().cpu()
grid.background_data.grad = None
if ENABLE_TORCH_CHECK:
with Timing("torch"):
sampt = grid.volume_render(rays, use_kernel=False)
s = F.mse_loss(sampt, rgb_gt)
with Timing("torch_backward"):
s.backward()
grid_sh_grad_t = grid.sh_data.grad.clone().cpu() if grid.sh_data.grad is not None else torch.zeros_like(grid_sh_grad_s)
grid_density_grad_t = grid.density_data.grad.clone().cpu() if grid.density_data.grad is not None else torch.zeros_like(grid_density_grad_s)
if grid.basis_type == svox2.BASIS_TYPE_3D_TEXTURE:
grid_basis_grad_t = grid.basis_data.grad.clone().cpu()
if grid.use_background:
grid_bg_grad_t = grid.background_data.grad.clone().cpu() if grid.background_data.grad is not None else torch.zeros_like(grid_bg_grad_s)
E = torch.abs(grid_sh_grad_s-grid_sh_grad_t)
Ed = torch.abs(grid_density_grad_s-grid_density_grad_t)
if grid.basis_type == svox2.BASIS_TYPE_3D_TEXTURE:
Eb = torch.abs(grid_basis_grad_s-grid_basis_grad_t)
if grid.use_background:
Ebg = torch.abs(grid_bg_grad_s-grid_bg_grad_t)
print('err', torch.abs(samps - sampt).max())
print('err_sh_grad\n', E.max())
print(' mean\n', E.mean())
print('err_density_grad\n', Ed.max())
print(' mean\n', Ed.mean())
if grid.basis_type == svox2.BASIS_TYPE_3D_TEXTURE:
print('err_basis_grad\n', Eb.max())
print(' mean\n', Eb.mean())
if grid.use_background:
print('err_background_grad\n', Ebg.max())
print(' mean\n', Ebg.mean())
print()
print('g_ours sh min/max\n', grid_sh_grad_s.min(), grid_sh_grad_s.max())
print('g_torch sh min/max\n', grid_sh_grad_t.min(), grid_sh_grad_t.max())
print('g_ours sigma min/max\n', grid_density_grad_s.min(), grid_density_grad_s.max())
print('g_torch sigma min/max\n', grid_density_grad_t.min(), grid_density_grad_t.max())
if grid.basis_type == svox2.BASIS_TYPE_3D_TEXTURE:
print('g_ours basis min/max\n', grid_basis_grad_s.min(), grid_basis_grad_s.max())
print('g_torch basis min/max\n', grid_basis_grad_t.min(), grid_basis_grad_t.max())
if grid.use_background:
print('g_ours bg min/max\n', grid_bg_grad_s.min(), grid_bg_grad_s.max())
print('g_torch bg min/max\n', grid_bg_grad_t.min(), grid_bg_grad_t.max())