Skip to content

Cancer Detection from Microscopic Images by Fine-tuning Pre-trained Models ("Inception") for new class labels

License

Notifications You must be signed in to change notification settings

anjanatiha/Cancer-Detection-from-Microscopic-Tissue-Images-with-Deep-Learning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

53 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Cancer Detection from Histopathologic Images using Deep Learning (Auto ML, Custom Convolutional Neural Network, and Transfer Learning)

Domain             : Computer Vision, Machine Learning
Sub-Domain         : Deep Learning, Image Recognition
Techniques         : Deep Convolutional Neural Network, Transfer Learning, ImageNet, Auto ML, NASNetMobile
Application        : Image Recognition, Image Classification, Medical Imaging

Description

1. Detected Cancer using Auto ML model from Google (“NASNetMobile”) with 250000+ (6.5GB) cancer cell images (histopathologic).
2. For training, concatenated global pooling (max, average), dropout and dense layers to the output layer for final output prediction.
3. Attained testing accuracy of 87.99% and loss of 0.30.

Code

GitHub Link      : Histopathologic Cancer Detection(GitHub)
GitLab Link      : Histopathologic Cancer Detection(GitLab)
Portfolio        : Anjana Tiha's Portfolio

Dataset

Dataset Name     : Histopathologic Cancer Detection
Dataset Link     : Histopathologic Cancer Detection (Kaggle)
                 : PatchCamelyon (PCam) (GitHub)
                 : CAMELYON16 challenge Dataset (Original Dataset)
                 
Original Paper   : Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer  
                   Authors: Babak Ehteshami Bejnordi, Mitko Veta, Paul Johannes van Diest 
                   JAMA (The Journal of the American Medical Association)
                   Ehteshami Bejnordi B, Veta M, Johannes van Diest P, et al. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA. 2017;318(22):2199–2210. doi:10.1001/jama.2017.14585
                   
Dataset Details
Dataset Name            : Histopathologic Cancer Detection
Number of Class         : 2
Number/Size of Images   : Total      : 220,025 (5.72 Gigabyte (GB))
                          Training   : 132,016 (3.43 Gigabyte (GB))
                          Validation : 44,005  (1.14 Gigabyte (GB))
                          Testing    : 44,004  (1.14 Gigabyte (GB))


Model Parameters
Machine Learning Library: Keras
Base Model              : InceptionV3
Optimizers              : Adam
Loss Function           : categorical_crossentropy


Training Parameters
Batch Size              : 32
Number of Epochs        : 2
Training Time           : 1.5 hour (90 min)


---------------------------------------------------------
Output (Prediction/ Recognition / Classification Metrics)
---------------------------------------------------------

Training
--------------------------------
Accuracy                : 93.59%
Loss                    : 0.1720
--------------------------------

Validation
--------------------------------
Accuracy                : 89.99%
Loss                    : 0.2952
--------------------------------

Testing
--------------------------------
Accuracy                : 89.77%
Loss                    : 89.77%
Precision               : 77.68%
Recall                  : 91.68%
Roc-Auc                 : 86.87%
--------------------------------

Sample Output:
See More Images
Confusion Matrix:
Confusion Matrix

Tools / Libraries

Languages               : Python
Tools/IDE               : Anaconda
Libraries               : Keras, TensorFlow, Inception, ImageNet

Dates

Duration                : November 2018 - Current
Current Version         : v1.0.0.3
Last Update             : 12.24.2018