Cancer Detection from Histopathologic Images using Deep Learning (Auto ML, Custom Convolutional Neural Network, and Transfer Learning)
Domain : Computer Vision, Machine Learning Sub-Domain : Deep Learning, Image Recognition Techniques : Deep Convolutional Neural Network, Transfer Learning, ImageNet, Auto ML, NASNetMobile Application : Image Recognition, Image Classification, Medical Imaging
1. Detected Cancer using Auto ML model from Google (“NASNetMobile”) with 250000+ (6.5GB) cancer cell images (histopathologic). 2. For training, concatenated global pooling (max, average), dropout and dense layers to the output layer for final output prediction. 3. Attained testing accuracy of 87.99% and loss of 0.30.
GitHub Link : Histopathologic Cancer Detection(GitHub) GitLab Link : Histopathologic Cancer Detection(GitLab) Portfolio : Anjana Tiha's Portfolio
Dataset Name : Histopathologic Cancer Detection Dataset Link : Histopathologic Cancer Detection (Kaggle) : PatchCamelyon (PCam) (GitHub) : CAMELYON16 challenge Dataset (Original Dataset) Original Paper : Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer Authors: Babak Ehteshami Bejnordi, Mitko Veta, Paul Johannes van Diest JAMA (The Journal of the American Medical Association) Ehteshami Bejnordi B, Veta M, Johannes van Diest P, et al. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA. 2017;318(22):2199–2210. doi:10.1001/jama.2017.14585
Dataset Details Dataset Name : Histopathologic Cancer Detection Number of Class : 2 Number/Size of Images : Total : 220,025 (5.72 Gigabyte (GB)) Training : 132,016 (3.43 Gigabyte (GB)) Validation : 44,005 (1.14 Gigabyte (GB)) Testing : 44,004 (1.14 Gigabyte (GB)) Model Parameters Machine Learning Library: Keras Base Model : InceptionV3 Optimizers : Adam Loss Function : categorical_crossentropy Training Parameters Batch Size : 32 Number of Epochs : 2 Training Time : 1.5 hour (90 min) --------------------------------------------------------- Output (Prediction/ Recognition / Classification Metrics) --------------------------------------------------------- Training -------------------------------- Accuracy : 93.59% Loss : 0.1720 -------------------------------- Validation -------------------------------- Accuracy : 89.99% Loss : 0.2952 -------------------------------- Testing -------------------------------- Accuracy : 89.77% Loss : 89.77% Precision : 77.68% Recall : 91.68% Roc-Auc : 86.87% --------------------------------See More Images
Languages : Python Tools/IDE : Anaconda Libraries : Keras, TensorFlow, Inception, ImageNet
Duration : November 2018 - Current Current Version : v1.0.0.3 Last Update : 12.24.2018