-
Notifications
You must be signed in to change notification settings - Fork 84
/
models.py
739 lines (564 loc) · 26.3 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
import torch
torch.autograd.set_detect_anomaly(True)
import torch.nn as nn
from utils import *
from utils import homo_warp
from inplace_abn import InPlaceABN
from renderer import run_network_mvs
def weights_init(m):
if isinstance(m, nn.Linear):
nn.init.kaiming_normal_(m.weight.data)
if m.bias is not None:
nn.init.zeros_(m.bias.data)
class Embedder:
def __init__(self, **kwargs):
self.kwargs = kwargs
self.create_embedding_fn()
def create_embedding_fn(self):
embed_fns = []
d = self.kwargs['input_dims']
out_dim = 0
if self.kwargs['include_input']:
embed_fns.append(lambda x : x)
out_dim += d
max_freq = self.kwargs['max_freq_log2']
N_freqs = self.kwargs['num_freqs']
if self.kwargs['log_sampling']:
freq_bands = 2.**torch.linspace(0., max_freq, steps=N_freqs)
else:
freq_bands = torch.linspace(2.**0., 2.**max_freq, steps=N_freqs)
self.freq_bands = freq_bands.reshape(1,-1,1).cuda()
for freq in freq_bands:
for p_fn in self.kwargs['periodic_fns']:
embed_fns.append(lambda x, p_fn=p_fn, freq=freq : p_fn(x * freq))
out_dim += d
self.embed_fns = embed_fns
self.out_dim = out_dim
def embed(self, inputs):
repeat = inputs.dim()-1
inputs_scaled = (inputs.unsqueeze(-2) * self.freq_bands.view(*[1]*repeat,-1,1)).reshape(*inputs.shape[:-1],-1)
inputs_scaled = torch.cat((inputs, torch.sin(inputs_scaled), torch.cos(inputs_scaled)),dim=-1)
return inputs_scaled
def get_embedder(multires, i=0, input_dims=3):
if i == -1:
return nn.Identity(), 3
embed_kwargs = {
'include_input' : True,
'input_dims' : input_dims,
'max_freq_log2' : multires-1,
'num_freqs' : multires,
'log_sampling' : True,
'periodic_fns' : [torch.sin, torch.cos],
}
embedder_obj = Embedder(**embed_kwargs)
embed = lambda x, eo=embedder_obj : eo.embed(x)
return embed, embedder_obj.out_dim
class ScaledDotProductAttention(nn.Module):
''' Scaled Dot-Product Attention '''
def __init__(self, temperature, attn_dropout=0.1):
super().__init__()
self.temperature = temperature
# self.dropout = nn.Dropout(attn_dropout)
def forward(self, q, k, v, mask=None):
attn = torch.matmul(q / self.temperature, k.transpose(2, 3))
if mask is not None:
attn = attn.masked_fill(mask == 0, -1e9)
# attn = attn * mask
attn = F.softmax(attn, dim=-1)
# attn = self.dropout(F.softmax(attn, dim=-1))
output = torch.matmul(attn, v)
return output, attn
class MultiHeadAttention(nn.Module):
''' Multi-Head Attention module '''
def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1):
super().__init__()
self.n_head = n_head
self.d_k = d_k
self.d_v = d_v
self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False)
self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False)
self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False)
self.fc = nn.Linear(n_head * d_v, d_model, bias=False)
self.attention = ScaledDotProductAttention(temperature=d_k ** 0.5)
# self.dropout = nn.Dropout(dropout)
self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)
def forward(self, q, k, v, mask=None):
d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
sz_b, len_q, len_k, len_v = q.size(0), q.size(1), k.size(1), v.size(1)
residual = q
# Pass through the pre-attention projection: b x lq x (n*dv)
# Separate different heads: b x lq x n x dv
q = self.w_qs(q).view(sz_b, len_q, n_head, d_k)
k = self.w_ks(k).view(sz_b, len_k, n_head, d_k)
v = self.w_vs(v).view(sz_b, len_v, n_head, d_v)
# Transpose for attention dot product: b x n x lq x dv
q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)
if mask is not None:
mask = mask.unsqueeze(1) # For head axis broadcasting.
q, attn = self.attention(q, k, v, mask=mask)
# Transpose to move the head dimension back: b x lq x n x dv
# Combine the last two dimensions to concatenate all the heads together: b x lq x (n*dv)
q = q.transpose(1, 2).contiguous().view(sz_b, len_q, -1)
q = self.fc(q)
q += residual
q = self.layer_norm(q)
return q, attn
class Renderer_v0(nn.Module):
def __init__(self, D=8, W=256, input_ch=3, input_ch_views=3, output_ch=4, input_ch_feat=8, skips=[4], use_viewdirs=False):
"""
"""
super(Renderer_v0, self).__init__()
self.D = D
self.W = W
self.input_ch = input_ch
self.input_ch_views = input_ch_views
self.skips = skips
self.use_viewdirs = use_viewdirs
self.in_ch_pts, self.in_ch_views, self.in_ch_feat = input_ch, input_ch_views, input_ch_feat
self.pts_linears = nn.ModuleList(
[nn.Linear(input_ch, W, bias=True)] + [nn.Linear(W, W, bias=True) if i not in self.skips else nn.Linear(W + input_ch, W) for i in range(D-1)])
self.pts_bias = nn.Linear(input_ch_feat, W)
self.views_linears = nn.ModuleList([nn.Linear(input_ch_views + W, W//2)])
if use_viewdirs:
self.feature_linear = nn.Linear(W, W)
self.alpha_linear = nn.Linear(W, 1)
self.rgb_linear = nn.Linear(W//2, 3)
else:
self.output_linear = nn.Linear(W, output_ch)
self.pts_linears.apply(weights_init)
self.views_linears.apply(weights_init)
self.feature_linear.apply(weights_init)
self.alpha_linear.apply(weights_init)
self.rgb_linear.apply(weights_init)
def forward(self, x):
dim = x.shape[-1]
in_ch_feat = dim-self.in_ch_pts-self.in_ch_views
input_pts, input_feats, input_views = torch.split(x, [self.in_ch_pts, in_ch_feat, self.in_ch_views], dim=-1)
h = input_pts
bias = self.pts_bias(input_feats)
for i, l in enumerate(self.pts_linears):
h = self.pts_linears[i](h) + bias
h = F.relu(h)
if i in self.skips:
h = torch.cat([input_pts, h], -1)
if self.use_viewdirs:
alpha = torch.relu(self.alpha_linear(h))
feature = self.feature_linear(h)
h = torch.cat([feature, input_views], -1)
for i, l in enumerate(self.views_linears):
h = self.views_linears[i](h)
h = F.relu(h)
rgb = torch.sigmoid(self.rgb_linear(h))
outputs = torch.cat([rgb, alpha], -1)
else:
outputs = self.output_linear(h)
return outputs
class Renderer_ours(nn.Module):
def __init__(self, D=8, W=256, input_ch=3, input_ch_views=3, output_ch=4, input_ch_feat=8, skips=[4], use_viewdirs=False):
"""
"""
super(Renderer_ours, self).__init__()
self.D = D
self.W = W
self.input_ch = input_ch
self.input_ch_views = input_ch_views
self.skips = skips
self.use_viewdirs = use_viewdirs
self.in_ch_pts, self.in_ch_views, self.in_ch_feat = input_ch, input_ch_views, input_ch_feat
self.pts_linears = nn.ModuleList(
[nn.Linear(self.in_ch_pts, W, bias=True)] + [nn.Linear(W, W, bias=True) if i not in self.skips else nn.Linear(W + self.in_ch_pts, W) for i in range(D-1)])
self.pts_bias = nn.Linear(input_ch_feat, W)
self.views_linears = nn.ModuleList([nn.Linear(input_ch_views + W, W//2)])
if use_viewdirs:
self.feature_linear = nn.Linear(W, W)
self.alpha_linear = nn.Linear(W, 1)
self.rgb_linear = nn.Linear(W//2, 3)
else:
self.output_linear = nn.Linear(W, output_ch)
self.pts_linears.apply(weights_init)
self.views_linears.apply(weights_init)
self.feature_linear.apply(weights_init)
self.alpha_linear.apply(weights_init)
self.rgb_linear.apply(weights_init)
def forward(self, x):
dim = x.shape[-1]
in_ch_feat = dim-self.in_ch_pts-self.in_ch_views
input_pts, input_feats, input_views = torch.split(x, [self.in_ch_pts, in_ch_feat, self.in_ch_views], dim=-1)
h = input_pts
bias = self.pts_bias(input_feats)
for i, l in enumerate(self.pts_linears):
h = self.pts_linears[i](h) * bias
h = F.relu(h)
if i in self.skips:
h = torch.cat([input_pts, h], -1)
if self.use_viewdirs:
alpha = torch.relu(self.alpha_linear(h))
feature = self.feature_linear(h)
h = torch.cat([feature, input_views], -1)
for i, l in enumerate(self.views_linears):
h = self.views_linears[i](h)
h = F.relu(h)
rgb = torch.sigmoid(self.rgb_linear(h))
outputs = torch.cat([rgb, alpha], -1)
else:
outputs = self.output_linear(h)
return outputs
class Renderer_color_fusion(nn.Module):
def __init__(self, D=8, W=128, input_ch=3, input_ch_views=3, output_ch=4, input_ch_feat=8, skips=[4],use_viewdirs=False):
"""
"""
super(Renderer_color_fusion, self).__init__()
self.D = D
self.W = W
self.input_ch = input_ch
self.input_ch_views = input_ch_views
self.skips = skips
self.use_viewdirs = use_viewdirs
self.in_ch_pts, self.in_ch_views, self.in_ch_feat = input_ch, input_ch_views, input_ch_feat
self.pts_linears = nn.ModuleList(
[nn.Linear(input_ch, W, bias=True)] + [
nn.Linear(W, W, bias=True) if i not in self.skips else nn.Linear(W + input_ch, W) for i in
range(D - 1)])
self.pts_bias = nn.Linear(input_ch_feat, W)
attension_dim = 16 + 3 + self.in_ch_views//3 # 16 + rgb dim + angle dim
self.ray_attention = MultiHeadAttention(4, attension_dim, 4, 4)
if use_viewdirs:
self.feature_linear = nn.Sequential(nn.Linear(W, 16), nn.ReLU())
self.alpha_linear = nn.Sequential(nn.Linear(W, 1), nn.ReLU())
self.rgb_out = nn.Sequential(nn.Linear(attension_dim, 3),nn.Sigmoid()) #
else:
self.output_linear = nn.Linear(W, output_ch)
self.pts_linears.apply(weights_init)
self.feature_linear.apply(weights_init)
self.alpha_linear.apply(weights_init)
self.rgb_out.apply(weights_init)
def forward_alpha(self,x):
input_pts, input_feats = torch.split(x, [self.in_ch_pts, self.in_ch_feat], dim=-1)
h = input_pts
bias = self.pts_bias(input_feats)
for i, l in enumerate(self.pts_linears):
h = self.pts_linears[i](h) * bias
h = F.relu(h)
if i in self.skips:
h = torch.cat([input_pts, h], -1)
alpha = self.alpha_linear(h)
return alpha
def forward(self, x):
dim = x.shape[-1]
in_ch_feat = dim - self.in_ch_pts - self.in_ch_views
input_pts, input_feats, input_views = torch.split(x, [self.in_ch_pts, in_ch_feat, self.in_ch_views], dim=-1)
h = input_pts
bias = self.pts_bias(input_feats)
for i, l in enumerate(self.pts_linears):
h = self.pts_linears[i](h) * bias
h = F.relu(h)
if i in self.skips:
h = torch.cat([input_pts, h], -1)
alpha = self.alpha_linear(h)
# color
input_views = input_views.reshape(-1, 3, self.in_ch_views//3)
rgb = input_feats[..., 8:].reshape(-1, 3, 4)
rgb_in = rgb[..., :3]
N = rgb.shape[0]
feature = self.feature_linear(h)
h = feature.reshape(N, 1, -1).expand(-1, 3, -1)
h = torch.cat((h, input_views, rgb_in), dim=-1)
h, _ = self.ray_attention(h, h, h, mask=rgb[...,-1:])
rgb = self.rgb_out(h)
rgb = torch.sum(rgb , dim=1).reshape(*alpha.shape[:2], 3)
outputs = torch.cat([rgb, alpha], -1)
return outputs
class MVSNeRF(nn.Module):
def __init__(self, D=8, W=256, input_ch_pts=3, input_ch_views=3, input_ch_feat=8, skips=[4], net_type='v2'):
"""
"""
super(MVSNeRF, self).__init__()
self.in_ch_pts, self.in_ch_views,self.in_ch_feat = input_ch_pts, input_ch_views, input_ch_feat
# we provide two version network structure
if 'v0' == net_type:
self.nerf = Renderer_ours(D=D, W=W,input_ch_feat=input_ch_feat,
input_ch=input_ch_pts, output_ch=4, skips=skips,
input_ch_views=input_ch_views, use_viewdirs=True)
elif 'v1' == net_type:
self.nerf = Renderer_color_fusion(D=D, W=W,input_ch_feat=input_ch_feat,
input_ch=input_ch_pts, output_ch=4, skips=skips,
input_ch_views=input_ch_views, use_viewdirs=True)
def forward(self, x):
RGBA = self.nerf(x)
return RGBA
def create_nerf_mvs(args, pts_embedder=True, use_mvs=False, dir_embedder=True):
"""Instantiate mvs NeRF's MLP model.
"""
if pts_embedder:
embed_fn, input_ch = get_embedder(args.multires, args.i_embed, input_dims=args.pts_dim)
else:
embed_fn, input_ch = None, args.pts_dim
embeddirs_fn = None
if dir_embedder:
embeddirs_fn, input_ch_views = get_embedder(args.multires_views, args.i_embed, input_dims=args.dir_dim)
else:
embeddirs_fn, input_ch_views = None, args.dir_dim
skips = [4]
model = MVSNeRF(D=args.netdepth, W=args.netwidth,
input_ch_pts=input_ch, skips=skips,
input_ch_views=input_ch_views, input_ch_feat=args.feat_dim, net_type=args.net_type).to(device)
grad_vars = []
grad_vars += list(model.parameters())
model_fine = None
if args.N_importance > 0:
model_fine = MVSNeRF(D=args.netdepth, W=args.netwidth,
input_ch_pts=input_ch, skips=skips,
input_ch_views=input_ch_views, input_ch_feat=args.feat_dim).to(device)
grad_vars += list(model_fine.parameters())
network_query_fn = lambda pts, viewdirs, rays_feats, network_fn: run_network_mvs(pts, viewdirs, rays_feats, network_fn,
embed_fn=embed_fn,
embeddirs_fn=embeddirs_fn,
netchunk=args.netchunk)
EncodingNet = None
if use_mvs:
EncodingNet = MVSNet().to(device)
grad_vars += list(EncodingNet.parameters()) #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
start = 0
##########################
# Load checkpoints
ckpts = []
if args.ckpt is not None and args.ckpt != 'None':
ckpts = [args.ckpt]
print('Found ckpts', ckpts)
if len(ckpts) > 0 :
ckpt_path = ckpts[-1]
print('Reloading from', ckpt_path)
ckpt = torch.load(ckpt_path)
# Load model
if use_mvs:
state_dict = ckpt['network_mvs_state_dict']
EncodingNet.load_state_dict(state_dict)
model.load_state_dict(ckpt['network_fn_state_dict'])
if model_fine is not None:
model_fine.load_state_dict(ckpt['network_fine_state_dict'])
##########################
render_kwargs_train = {
'network_query_fn': network_query_fn,
'perturb': args.perturb,
'N_importance': args.N_importance,
'network_fine': model_fine,
'N_samples': args.N_samples,
'network_fn': model,
'network_mvs': EncodingNet,
'use_viewdirs': args.use_viewdirs,
'white_bkgd': args.white_bkgd,
'raw_noise_std': args.raw_noise_std,
}
render_kwargs_test = {k: render_kwargs_train[k] for k in render_kwargs_train}
render_kwargs_test['perturb'] = False
return render_kwargs_train, render_kwargs_test, start, grad_vars
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
############################################# MVS Net models ################################################
class ConvBnReLU(nn.Module):
def __init__(self, in_channels, out_channels,
kernel_size=3, stride=1, pad=1,
norm_act=InPlaceABN):
super(ConvBnReLU, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels,
kernel_size, stride=stride, padding=pad, bias=False)
self.bn = norm_act(out_channels)
def forward(self, x):
return self.bn(self.conv(x))
class ConvBnReLU3D(nn.Module):
def __init__(self, in_channels, out_channels,
kernel_size=3, stride=1, pad=1,
norm_act=InPlaceABN):
super(ConvBnReLU3D, self).__init__()
self.conv = nn.Conv3d(in_channels, out_channels,
kernel_size, stride=stride, padding=pad, bias=False)
self.bn = norm_act(out_channels)
# self.bn = nn.ReLU()
def forward(self, x):
return self.bn(self.conv(x))
################################### feature net ######################################
class FeatureNet(nn.Module):
"""
output 3 levels of features using a FPN structure
"""
def __init__(self, norm_act=InPlaceABN):
super(FeatureNet, self).__init__()
self.conv0 = nn.Sequential(
ConvBnReLU(3, 8, 3, 1, 1, norm_act=norm_act),
ConvBnReLU(8, 8, 3, 1, 1, norm_act=norm_act))
self.conv1 = nn.Sequential(
ConvBnReLU(8, 16, 5, 2, 2, norm_act=norm_act),
ConvBnReLU(16, 16, 3, 1, 1, norm_act=norm_act),
ConvBnReLU(16, 16, 3, 1, 1, norm_act=norm_act))
self.conv2 = nn.Sequential(
ConvBnReLU(16, 32, 5, 2, 2, norm_act=norm_act),
ConvBnReLU(32, 32, 3, 1, 1, norm_act=norm_act),
ConvBnReLU(32, 32, 3, 1, 1, norm_act=norm_act))
self.toplayer = nn.Conv2d(32, 32, 1)
def _upsample_add(self, x, y):
return F.interpolate(x, scale_factor=2,
mode="bilinear", align_corners=True) + y
def forward(self, x):
# x: (B, 3, H, W)
x = self.conv0(x) # (B, 8, H, W)
x = self.conv1(x) # (B, 16, H//2, W//2)
x = self.conv2(x) # (B, 32, H//4, W//4)
x = self.toplayer(x) # (B, 32, H//4, W//4)
return x
class CostRegNet(nn.Module):
def __init__(self, in_channels, norm_act=InPlaceABN):
super(CostRegNet, self).__init__()
self.conv0 = ConvBnReLU3D(in_channels, 8, norm_act=norm_act)
self.conv1 = ConvBnReLU3D(8, 16, stride=2, norm_act=norm_act)
self.conv2 = ConvBnReLU3D(16, 16, norm_act=norm_act)
self.conv3 = ConvBnReLU3D(16, 32, stride=2, norm_act=norm_act)
self.conv4 = ConvBnReLU3D(32, 32, norm_act=norm_act)
self.conv5 = ConvBnReLU3D(32, 64, stride=2, norm_act=norm_act)
self.conv6 = ConvBnReLU3D(64, 64, norm_act=norm_act)
self.conv7 = nn.Sequential(
nn.ConvTranspose3d(64, 32, 3, padding=1, output_padding=1,
stride=2, bias=False),
norm_act(32))
self.conv9 = nn.Sequential(
nn.ConvTranspose3d(32, 16, 3, padding=1, output_padding=1,
stride=2, bias=False),
norm_act(16))
self.conv11 = nn.Sequential(
nn.ConvTranspose3d(16, 8, 3, padding=1, output_padding=1,
stride=2, bias=False),
norm_act(8))
def forward(self, x):
conv0 = self.conv0(x)
conv2 = self.conv2(self.conv1(conv0))
conv4 = self.conv4(self.conv3(conv2))
x = self.conv6(self.conv5(conv4))
x = conv4 + self.conv7(x)
del conv4
x = conv2 + self.conv9(x)
del conv2
x = conv0 + self.conv11(x)
del conv0
return x
class MVSNet(nn.Module):
def __init__(self,
num_groups=1,
norm_act=InPlaceABN,
levels=1):
super(MVSNet, self).__init__()
self.levels = levels # 3 depth levels
self.n_depths = [128,32,8]
self.G = num_groups # number of groups in groupwise correlation
self.feature = FeatureNet()
self.N_importance = 0
self.chunk = 1024
self.cost_reg_2 = CostRegNet(32 + 9, norm_act)
def build_volume_costvar(self, feats, proj_mats, depth_values, pad=0, idx=[0,1,2]):
# feats: (B, V, C, H, W)
# proj_mats: (B, V, 3, 4)
# depth_values: (B, D, H, W)
# cost_reg: nn.Module of input (B, C, D, h, w) and output (B, 1, D, h, w)
# volume_sum [B, G, D, h, w]
# prob_volume [B D H W]
# volume_feature [B C D H W]
D = depth_values.shape[1]
ref_feats, src_feats = feats[:, idx[0]], feats[:, idx[1:]]
src_feats = src_feats.permute(1, 0, 2, 3, 4) # (V-1, B, C, h, w)
if proj_mats.dim() == 5:
proj_mats = (proj_mats[0,0,idx[1:]] @ proj_mats[1,0,idx[0]])[None,:,:3]
else:
proj_mats = proj_mats[:, idx[1:]]
proj_mats = proj_mats.permute(1, 0, 2, 3) # (V-1, B, 3, 4)
if pad>0:
ref_feats = F.pad(ref_feats, (pad,pad,pad,pad), "constant", 0)
source_volume = []
source_volume.append(ref_feats.unsqueeze(2).repeat(1, 1, D, 1, 1)) # (B, C, D, h, w))
for src_feat, proj_mat in zip(src_feats, proj_mats):
warped_volume, src_grid = homo_warp(src_feat, proj_mat, depth_values, pad=pad)
source_volume.append(warped_volume)
cost_var = torch.cat(source_volume, dim=0)
del source_volume
cost_var = torch.cat((cost_var, torch.mean(cost_var**2, dim=0, keepdim=True)-torch.mean(cost_var, dim=0, keepdim=True)**2),dim=0)
cost_var = cost_var.view(1,-1,*cost_var.shape[2:])
return cost_var
def build_volume_costvar_img(self, imgs, feats, proj_mats, depth_values, pad=0, idx=[0,1,2]):
# feats: (B, V, C, H, W)
# proj_mats: (B, V, 3, 4)
# depth_values: (B, D, H, W)
# cost_reg: nn.Module of input (B, C, D, h, w) and output (B, 1, D, h, w)
# volume_sum [B, G, D, h, w]
# prob_volume [B D H W]
# volume_feature [B C D H W]
B, V, C, H, W = feats.shape
D = depth_values.shape[1]
ref_feats, src_feats = feats[:, idx[0]], feats[:, idx[1:]]
src_feats = src_feats.permute(1, 0, 2, 3, 4) # (V-1, B, C, h, w)
proj_mats = proj_mats[:, idx[1:]]
proj_mats = proj_mats.permute(1, 0, 2, 3) # (V-1, B, 3, 4)
if pad>0:
ref_feats = F.pad(ref_feats, (pad,pad,pad,pad), "constant", 0)
img_feat = torch.empty((B, 9 +32, D, *ref_feats.shape[-2:]), device=feats.device, dtype=torch.float)
imgs = F.interpolate(imgs.view(B*V,*imgs.shape[2:]),(H,W),mode='bilinear',align_corners=False).view(B,V,-1,H,W).permute(1,0,2,3,4)
img_feat[:,:3,:,pad:H+pad,pad:W+pad] = imgs[idx[0]].unsqueeze(2).expand(-1,-1,D,-1,-1)
ref_volume = ref_feats.unsqueeze(2).repeat(1, 1, D, 1, 1) # (B, C, D, h, w)
volume_sum = ref_volume
volume_sq_sum = ref_volume ** 2
del ref_feats
count = torch.ones((B, 1, D, H + pad * 2, W + pad * 2), device=volume_sum.device)
for i,(src_img, src_feat, proj_mat) in enumerate(zip(imgs[idx[1:]], src_feats, proj_mats)):
warped_volume, grid = homo_warp(src_feat, proj_mat, depth_values, pad=pad)
img_feat[:,(i+1)*3:(i+2)*3], _ = homo_warp(src_img, proj_mat, depth_values, src_grid=grid, pad=pad)
grid = grid.view(B, 1, D, H + pad * 2, W + pad * 2, 2)
in_mask = ((grid >-1.0)*(grid < 1.0))
in_mask = (in_mask[...,0]*in_mask[...,1])
count += in_mask.float()
if self.training:
volume_sum = volume_sum + warped_volume
volume_sq_sum = volume_sq_sum + warped_volume ** 2
else:
volume_sum += warped_volume
volume_sq_sum += warped_volume.pow_(2)
del warped_volume, src_feat, proj_mat
del src_feats, proj_mats
count = 1.0 / count
img_feat[:, -32:] = volume_sq_sum * count - (volume_sum * count) ** 2
del volume_sq_sum, volume_sum, count
return img_feat
def forward(self, imgs, proj_mats, near_far, pad=0, idx=[0,1,2]):
# imgs: (B, V, 3, H, W)
# proj_mats: (B, V, 3, 4) from fine to coarse
# init_depth_min, depth_interval: (B) or float
# near_far (B, V, 2)
B, V, _, H, W = imgs.shape
imgs = imgs.reshape(B * V, 3, H, W)
feats = self.feature(imgs) # (B*V, 8, H, W), (B*V, 16, H//2, W//2), (B*V, 32, H//4, W//4)
imgs = imgs.view(B, V, 3, H, W)
l = 0
level = 2 - l
feats_l = feats # (B*V, C, h, w)
feats_l = feats_l.view(B, V, *feats_l.shape[1:]) # (B, V, C, h, w)
D = 128
init_depth_min = near_far[0] # assume batch size==1
depth_interval_l = near_far[1] - near_far[0]
depth_values = init_depth_min + \
depth_interval_l * \
torch.linspace(0., 1., steps=D,
device=imgs.device,
dtype=imgs.dtype) # (B, D)
depth_values = depth_values.unsqueeze(0)
volume_feat = self.build_volume_costvar_img(imgs, feats_l, proj_mats, depth_values, pad=pad, idx=idx)
# volume_feat = self.build_volume_costvar(feats_l, proj_mats, depth_values, pad=pad, idx=idx)
volume_feat = self.cost_reg_2(volume_feat) # (B, 1, D, h, w)
volume_feat = volume_feat.reshape(1,-1,*volume_feat.shape[2:])
return volume_feat, feats_l, depth_values
class RefVolume(nn.Module):
def __init__(self, volume):
super(RefVolume, self).__init__()
self.feat_volume = nn.Parameter(volume)
def forward(self, ray_coordinate_ref):
'''coordinate: [N, 3]
z,x,y
'''
device = self.feat_volume.device
H, W = ray_coordinate_ref.shape[-3:-1]
grid = ray_coordinate_ref.view(-1, 1, H, W, 3).to(device) * 2 - 1.0 # [1 1 H W 3] (x,y,z)
features = F.grid_sample(self.feat_volume, grid, align_corners=True, mode='bilinear')[:, :, 0].permute(2, 3, 0,1).squeeze()
return features