-
Notifications
You must be signed in to change notification settings - Fork 84
/
Copy pathray_utils.py
224 lines (177 loc) · 8.17 KB
/
ray_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import torch
import numpy as np
from renderer import ndc2dist
from torch import searchsorted
from kornia import create_meshgrid
from renderer import depth2dist
from utils import index_point_feature
def get_ray_directions(H, W, focal, center=None):
"""
Get ray directions for all pixels in camera coordinate.
Reference: https://www.scratchapixel.com/lessons/3d-basic-rendering/
ray-tracing-generating-camera-rays/standard-coordinate-systems
Inputs:
H, W, focal: image height, width and focal length
Outputs:
directions: (H, W, 3), the direction of the rays in camera coordinate
"""
grid = create_meshgrid(H, W, normalized_coordinates=False)[0]
i, j = grid.unbind(-1)
# the direction here is without +0.5 pixel centering as calibration is not so accurate
# see https://github.com/bmild/nerf/issues/24
cent = center if center is not None else [W / 2, H / 2]
directions = torch.stack([(i - cent[0]) / focal[0], (j - cent[1]) / focal[1], torch.ones_like(i)], -1) # (H, W, 3)
return directions
def get_rays(directions, c2w):
"""
Get ray origin and normalized directions in world coordinate for all pixels in one image.
Reference: https://www.scratchapixel.com/lessons/3d-basic-rendering/
ray-tracing-generating-camera-rays/standard-coordinate-systems
Inputs:
directions: (H, W, 3) precomputed ray directions in camera coordinate
c2w: (3, 4) transformation matrix from camera coordinate to world coordinate
Outputs:
rays_o: (H*W, 3), the origin of the rays in world coordinate
rays_d: (H*W, 3), the normalized direction of the rays in world coordinate
"""
# Rotate ray directions from camera coordinate to the world coordinate
rays_d = directions @ c2w[:3, :3].T # (H, W, 3)
# rays_d = rays_d / torch.norm(rays_d, dim=-1, keepdim=True)
# The origin of all rays is the camera origin in world coordinate
rays_o = c2w[:3, 3].expand(rays_d.shape) # (H, W, 3)
rays_d = rays_d.view(-1, 3)
rays_o = rays_o.view(-1, 3)
return rays_o, rays_d
def get_ndc_rays(H, W, focal, near, rays_o, rays_d):
"""
Transform rays from world coordinate to NDC.
NDC: Space such that the canvas is a cube with sides [-1, 1] in each axis.
For detailed derivation, please see:
http://www.songho.ca/opengl/gl_projectionmatrix.html
https://github.com/bmild/nerf/files/4451808/ndc_derivation.pdf
In practice, use NDC "if and only if" the scene is unbounded (has a large depth).
See https://github.com/bmild/nerf/issues/18
Inputs:
H, W, focal: image height, width and focal length
near: (N_rays) or float, the depths of the near plane
rays_o: (N_rays, 3), the origin of the rays in world coordinate
rays_d: (N_rays, 3), the direction of the rays in world coordinate
Outputs:
rays_o: (N_rays, 3), the origin of the rays in NDC
rays_d: (N_rays, 3), the direction of the rays in NDC
"""
# Shift ray origins to near plane
t = -(near + rays_o[..., 2]) / rays_d[..., 2]
rays_o = rays_o + t[..., None] * rays_d
# Store some intermediate homogeneous results
ox_oz = rays_o[..., 0] / rays_o[..., 2]
oy_oz = rays_o[..., 1] / rays_o[..., 2]
# Projection
o0 = -1. / (W / (2. * focal[0])) * ox_oz
o1 = -1. / (H / (2. * focal[1])) * oy_oz
o2 = 1. + 2. * near / rays_o[..., 2]
d0 = -1. / (W / (2. * focal[0])) * (rays_d[..., 0] / rays_d[..., 2] - ox_oz)
d1 = -1. / (H / (2. * focal[1])) * (rays_d[..., 1] / rays_d[..., 2] - oy_oz)
d2 = 1 - o2
rays_o = torch.stack([o0, o1, o2], -1) # (B, 3)
rays_d = torch.stack([d0, d1, d2], -1) # (B, 3)
return rays_o, rays_d
# Hierarchical sampling (section 5.2)
def sample_pdf(bins, weights, N_samples, det=False, pytest=False):
device = weights.device
# Get pdf
weights = weights + 1e-5 # prevent nans
pdf = weights / torch.sum(weights, -1, keepdim=True)
cdf = torch.cumsum(pdf, -1)
cdf = torch.cat([torch.zeros_like(cdf[...,:1]), cdf], -1) # (batch, len(bins))
# Take uniform samples
if det:
u = torch.linspace(0., 1., steps=N_samples, device=device)
u = u.expand(list(cdf.shape[:-1]) + [N_samples])
else:
u = torch.rand(list(cdf.shape[:-1]) + [N_samples], device=device)
# Pytest, overwrite u with numpy's fixed random numbers
if pytest:
np.random.seed(0)
new_shape = list(cdf.shape[:-1]) + [N_samples]
if det:
u = np.linspace(0., 1., N_samples)
u = np.broadcast_to(u, new_shape)
else:
u = np.random.rand(*new_shape)
u = torch.Tensor(u)
# Invert CDF
u = u.contiguous()
inds = searchsorted(cdf.detach(), u, right=True)
below = torch.max(torch.zeros_like(inds-1), inds-1)
above = torch.min((cdf.shape[-1]-1) * torch.ones_like(inds), inds)
inds_g = torch.stack([below, above], -1) # (batch, N_samples, 2)
matched_shape = [inds_g.shape[0], inds_g.shape[1], cdf.shape[-1]]
cdf_g = torch.gather(cdf.unsqueeze(1).expand(matched_shape), 2, inds_g)
bins_g = torch.gather(bins.unsqueeze(1).expand(matched_shape), 2, inds_g)
denom = (cdf_g[...,1]-cdf_g[...,0])
denom = torch.where(denom<1e-5, torch.ones_like(denom), denom)
t = (u-cdf_g[...,0])/denom
samples = bins_g[...,0] + t * (bins_g[...,1]-bins_g[...,0])
return samples
def dda(rays_o, rays_d, bbox_3D):
inv_ray_d = 1.0/(rays_d+1e-6)
t_min = (bbox_3D[:1] - rays_o)*inv_ray_d # N_rays 3
t_max = (bbox_3D[1:] - rays_o)*inv_ray_d
t = torch.stack((t_min,t_max)) # 2 N_rays 3
t_min = torch.max(torch.min(t, dim=0)[0],dim=-1, keepdim=True)[0]
t_max = torch.min(torch.max(t, dim=0)[0],dim=-1, keepdim=True)[0]
return t_min, t_max
def ray_marcher(rays,
N_samples=64,
lindisp=False,
perturb=0,
bbox_3D=None):
"""
sample points along the rays
Inputs:
rays: ()
Returns:
"""
# Decompose the inputs
N_rays = rays.shape[0]
rays_o, rays_d = rays[:, 0:3], rays[:, 3:6] # both (N_rays, 3)
near, far = rays[:, 6:7], rays[:, 7:8] # both (N_rays, 1)
if bbox_3D is not None:
# cal aabb boundles
near, far = dda(rays_o, rays_d, bbox_3D)
# Sample depth points
z_steps = torch.linspace(0, 1, N_samples, device=rays.device) # (N_samples)
if not lindisp: # use linear sampling in depth space
z_vals = near * (1 - z_steps) + far * z_steps
else: # use linear sampling in disparity space
z_vals = 1 / (1 / near * (1 - z_steps) + 1 / far * z_steps)
z_vals = z_vals.expand(N_rays, N_samples)
if perturb > 0: # perturb sampling depths (z_vals)
z_vals_mid = 0.5 * (z_vals[:, :-1] + z_vals[:, 1:]) # (N_rays, N_samples-1) interval mid points
# get intervals between samples
upper = torch.cat([z_vals_mid, z_vals[:, -1:]], -1)
lower = torch.cat([z_vals[:, :1], z_vals_mid], -1)
perturb_rand = perturb * torch.rand(z_vals.shape, device=rays.device)
z_vals = lower + (upper - lower) * perturb_rand
xyz_coarse_sampled = rays_o.unsqueeze(1) + \
rays_d.unsqueeze(1) * z_vals.unsqueeze(2) # (N_rays, N_samples, 3)
return xyz_coarse_sampled, rays_o, rays_d, z_vals
def ray_marcher_fine(rays,
density_volume,
z_vals,
pts_NDC,
N_importance=64,
lindisp=False):
rays_o, rays_d = rays[:, 0:3], rays[:, 3:6] # both (N_rays, 3)
pts_NDC = pts_NDC*2-1.0
sigma = index_point_feature(density_volume[None,None], pts_NDC)
alpha = 1. - torch.exp(-torch.relu(sigma)) # *5e-3
weights = alpha * torch.cumprod(
torch.cat([torch.ones(alpha.shape[0], 1).to(alpha.device), 1. - alpha + 1e-10], -1), -1)[:, :-1]
z_vals_mid = 0.5 * (z_vals[:, :-1] + z_vals[:, 1:])
z_samples = sample_pdf(z_vals_mid, weights[:, 1:-1], N_importance).detach()
z_vals = torch.sort(torch.cat([z_samples, z_vals], -1), -1)[0]
xyz_coarse_sampled = rays_o.unsqueeze(1) + \
rays_d.unsqueeze(1) * z_vals.unsqueeze(2) # (N_rays, N_samples, 3)
return xyz_coarse_sampled, rays_o, rays_d, z_vals