-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathimagenet.py
121 lines (103 loc) · 4.21 KB
/
imagenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import torch.nn.parallel
import torch.optim
import torch.utils.data
from torch.autograd import Variable
from nasnet import NASNet, nasnetmobile, nasnetlarge, PowersignCD
import os
import torch
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from tqdm import tqdm
class Trainer(object):
cuda = torch.cuda.is_available()
def __init__(self, model, optimizer, loss_f, save_dir=None, save_freq=5):
self.model = model
if self.cuda:
model.cuda()
self.optimizer = optimizer
self.loss_f = loss_f
self.save_dir = save_dir
self.save_freq = save_freq
def _loop(self, data_loader, is_train=True):
loop_loss = []
correct = []
for data, target in tqdm(data_loader):
if self.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data, volatile=not is_train), Variable(target, volatile=not is_train)
self.optimizer.zero_grad()
output = self.model(data)
loss = self.loss_f(output, target)
loop_loss.append(loss.data[0] / len(data_loader))
correct.append((output.data.max(1)[1] == target.data).sum() / len(data_loader.dataset))
if is_train:
loss.backward()
self.optimizer.step()
mode = "train" if is_train else "test"
print(f">>>[{mode}] loss: {sum(loop_loss):.2f}/accuracy: {sum(correct):.2%}")
return loop_loss, correct
def train(self, data_loader):
self.model.train()
loss, correct = self._loop(data_loader)
def test(self, data_loader):
self.model.eval()
loss, correct = self._loop(data_loader, is_train=False)
def loop(self, epochs, train_data, test_data, scheduler=None):
for ep in range(1, epochs + 1):
if scheduler is not None:
scheduler.step()
print(f"epochs: {ep}")
self.train(train_data)
self.test(test_data)
if ep % self.save_freq:
self.save(ep)
def save(self, epoch, **kwargs):
if self.save_dir:
name = f"weight-{epoch}-" + "-".join([f"{k}_{v}" for k, v in kwargs.items()]) + ".pkl"
torch.save({"weight": self.model.state_dict(),
"optimizer": self.optimizer.state_dict()},
os.path.join(self.save_dir, name))
def main(type, batch_size, data_root, n_epochs):
if type == 'mobile':
input_size = 224,
model = nasnetmobile
elif type == 'large':
input_size = 331
model = nasnetlarge
else:
input_size = 299
model = nasnetlarge
transform_train = transforms.Compose([
transforms.RandomSizedCrop(input_size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
transform_test = transforms.Compose([
transforms.CenterCrop(input_size),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
traindir = os.path.join(data_root, 'train')
valdir = os.path.join(data_root, 'val')
train = datasets.ImageFolder(traindir, transform_train)
val = datasets.ImageFolder(valdir, transform_test)
train_loader = torch.utils.data.DataLoader(
train, batch_size=batch_size, shuffle=True, num_workers=8)
test_loader = torch.utils.data.DataLoader(
val, batch_size=batch_size, shuffle=True, num_workers=8)
net = model(num_classes=1000)
optimizer = PowersignCD(params=net.parameters(), steps=len(train)/batch_size*n_epochs, lr=0.6, momentum=0.9)
trainer = Trainer(net, optimizer, F.cross_entropy, save_dir=".")
trainer.loop(n_epochs, train_loader, test_loader)
if __name__ == '__main__':
import argparse
p = argparse.ArgumentParser()
p.add_argument("root", help="imagenet data root")
p.add_argument("--batch_size", default=8, type=int)
p.add_argument("--n_epochs", default=10, type=int)
args = p.parse_args()
main(args.batch_size, args.root, args.n_epochs)