-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain.py
393 lines (333 loc) · 21.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
# Modified by Katja Schwarz for VoxGRAF: Fast 3D-Aware Image Synthesis with Sparse Voxel Grids
#
"""Train a GAN using the techniques described in the paper
"Alias-Free Generative Adversarial Networks"."""
import os
import shutil
import click
import re
import json
import tempfile
import torch
import legacy
import dill
import warnings
# environment variables
os.environ['OMP_NUM_THREADS'] = "16"
import dnnlib
from training import training_loop
from metrics import metric_main
from torch_utils import training_stats
from torch_utils import custom_ops
from torch_utils import misc
from svox2 import svox2
#----------------------------------------------------------------------------
def subprocess_fn(rank, c, temp_dir):
dnnlib.util.Logger(file_name=os.path.join(c.run_dir, 'log.txt'), file_mode='a', should_flush=True)
if rank == 0:
write_gpu_info()
print(c.run_dir)
# Init torch.distributed.
if c.num_gpus > 1:
init_file = os.path.abspath(os.path.join(temp_dir, '.torch_distributed_init'))
if os.name == 'nt':
init_method = 'file:///' + init_file.replace('\\', '/')
torch.distributed.init_process_group(backend='gloo', init_method=init_method, rank=rank, world_size=c.num_gpus)
else:
init_method = f'file://{init_file}'
torch.distributed.init_process_group(backend='nccl', init_method=init_method, rank=rank, world_size=c.num_gpus)
# Init torch_utils.
sync_device = torch.device('cuda', rank) if c.num_gpus > 1 else None
training_stats.init_multiprocessing(rank=rank, sync_device=sync_device)
if rank != 0:
custom_ops.verbosity = 'none'
# Execute training loop.
training_loop.training_loop(rank=rank, **c)
#----------------------------------------------------------------------------
def launch_training(c, desc, outdir, dry_run):
dnnlib.util.Logger(should_flush=True)
# Pick output directory.
prev_run_dirs = []
if os.path.isdir(outdir):
prev_run_dirs = [x for x in os.listdir(outdir) if os.path.isdir(os.path.join(outdir, x))]
matching_dirs = [re.fullmatch(r'\d{5}' + f'-{desc}', x) for x in prev_run_dirs if
re.fullmatch(r'\d{5}' + f'-{desc}', x) is not None]
if c.continue_training and len(matching_dirs) > 0: # expect unique desc, continue in this directory
assert len(matching_dirs) == 1, f'Multiple directories found for resuming: {matching_dirs}'
c.run_dir = os.path.join(outdir, matching_dirs[0].group())
else: # fallback to standard
prev_run_ids = [re.match(r'^\d+', x) for x in prev_run_dirs]
prev_run_ids = [int(x.group()) for x in prev_run_ids if x is not None]
cur_run_id = max(prev_run_ids, default=-1) + 1
c.run_dir = os.path.join(outdir, f'{cur_run_id:05d}-{desc}')
assert not os.path.exists(c.run_dir)
# Print options.
print()
print('Training options:')
print(json.dumps(c, indent=2))
print()
print(f'Output directory: {c.run_dir}')
print(f'Number of GPUs: {c.num_gpus}')
print(f'Batch size: {c.batch_size} images')
print(f'Training duration: {c.total_kimg} kimg')
print(f'Dataset path: {c.training_set_kwargs.path}')
print(f'Dataset size: {c.training_set_kwargs.max_size} images')
print(f'Dataset resolution: {c.training_set_kwargs.resolution}')
print(f'Dataset labels: {c.training_set_kwargs.use_labels}')
print(f'Dataset x-flips: {c.training_set_kwargs.xflip}')
print()
# Dry run?
if dry_run:
print('Dry run; exiting.')
return
# Create output directory.
print('Creating output directory...')
os.makedirs(c.run_dir, exist_ok=c.continue_training)
with open(os.path.join(c.run_dir, 'training_options.json'), 'wt+') as f:
json.dump(c, f, indent=2)
if c.resume_pkl is not None: # create local copy and set best_fid to 9999 to ensure saving new best model
resume_file = os.path.join(c.run_dir, 'model_start.pkl')
if not os.path.isfile(resume_file):
shutil.copyfile(c.resume_pkl, resume_file)
else:
'Local copy of resume file exists - start from there and ignore "resume_pkl" input. ' \
'If this is not desired, please rename or remove the local copy first.'
c.resume_pkl = resume_file
with dnnlib.util.open_url(resume_file) as f:
resume_data = legacy.load_network_pkl(f)
resume_data['progress']['best_fid'] = 9999
with open(resume_file, 'wb') as f:
dill.dump(resume_data, f)
# Launch processes.
print('Launching processes...')
torch.multiprocessing.set_start_method('spawn')
with tempfile.TemporaryDirectory() as temp_dir:
if c.num_gpus == 1:
subprocess_fn(rank=0, c=c, temp_dir=temp_dir)
else:
torch.multiprocessing.spawn(fn=subprocess_fn, args=(c, temp_dir), nprocs=c.num_gpus)
#----------------------------------------------------------------------------
def init_dataset_kwargs(data):
class_name = 'training.dataset.ImageFolderDataset'
try:
dataset_kwargs = dnnlib.EasyDict(class_name=class_name, path=data, use_labels=False, max_size=None, xflip=False)
dataset_obj = dnnlib.util.construct_class_by_name(**dataset_kwargs) # Subclass of training.dataset.Dataset.
if dataset_obj.label_dim != 0: warnings.warn('Ignore labels.')
dataset_kwargs.resolution = dataset_obj.resolution # Be explicit about resolution.
dataset_kwargs.max_size = len(dataset_obj) # Be explicit about dataset size.
return dataset_kwargs, dataset_obj.name
except IOError as err:
raise click.ClickException(f'--data: {err}')
#----------------------------------------------------------------------------
def parse_comma_separated_list(s):
if isinstance(s, list):
return s
if s is None or s.lower() == 'none' or s == '':
return []
return s.split(',')
#----------------------------------------------------------------------------
def write_gpu_info():
import subprocess as sp
print(sp.getoutput('nvidia-smi'))
#----------------------------------------------------------------------------
@click.command()
# Required.
@click.option('--outdir', help='Where to save the results', metavar='DIR', required=True)
@click.option('--data', help='Training data', metavar='[ZIP|DIR]', type=str, required=True)
@click.option('--gpus', help='Number of GPUs to use', metavar='INT', type=click.IntRange(min=1), required=True)
@click.option('--batch', help='Total batch size', metavar='INT', type=click.IntRange(min=1), required=True)
@click.option('--gamma', help='R1 regularization weight', metavar='FLOAT', type=click.FloatRange(min=0), default=1.0)
# Optional features.
@click.option('--aug', help='Augmentation mode', type=click.Choice(['noaug', 'ada', 'fixed']), default='ada', show_default=True)
@click.option('--resume', help='Resume from given network pickle', metavar='[PATH|URL]', type=str)
@click.option('--continue-training', help='If output directory with same name exists, continue training there.', type=bool, default=True, show_default=True)
# Voxgraf settings.
@click.option('--grid-res', help='Resolution of sparse voxel grid', metavar='INT', type=click.IntRange(min=1), default=32, show_default=True)
@click.option('--dense-resolution', help='resolution of dense stem for hybrid arch', metavar='INT', type=click.IntRange(min=4), default=32, show_default=True)
@click.option('--prune-last', help='Prune the last layer', is_flag=True)
@click.option('--sparse_type', help='Implementation of sparse convolution', type=click.Choice(['pytorch', 'minkowski']), default='pytorch', show_default=True)
@click.option('--sigma_mpl', help='Sigma multiplier', type=click.FloatRange(), default=30, show_default=True)
@click.option('--n-refinement', help='Number of refinement layers', type=click.IntRange(min=0), default=3, show_default=True)
@click.option('--use_bg', help='Generate a background', type=bool, default=True, show_default=True)
@click.option('--bg_cbase', help='Capacity multiplier', metavar='INT', type=click.IntRange(min=1), default=2048, show_default=True)
@click.option('--bg_cmax', help='Max. feature maps', metavar='INT', type=click.IntRange(min=1), default=64, show_default=True)
# Regularizers
@click.option('--lambda_tv_sigma', help='Strength of total variation loss on density', metavar='FLOAT', type=click.FloatRange(min=0), default=0, show_default=True)
@click.option('--lambda_cvg_fg', help='Strength of foreground coverage loss', metavar='FLOAT', type=click.FloatRange(min=0), default=0.1, show_default=True)
@click.option('--min_cvg_fg', help='Minimum foreground coverage threshold', metavar='FLOAT', type=click.FloatRange(min=0), default=0.4, show_default=True)
@click.option('--lambda_cvg_bg', help='Strength of background coverage loss', metavar='FLOAT', type=click.FloatRange(min=0), default=0.1, show_default=True)
@click.option('--min_cvg_bg', help='Minimum background coverage threshold', metavar='FLOAT', type=click.FloatRange(min=0), default=0.1, show_default=True)
@click.option('--lambda_vardepth', help='Strength of depth variance loss', metavar='FLOAT', type=click.FloatRange(min=0), default=1e-2, show_default=True)
@click.option('--lambda_sparsity', help='Strength of sparsity regularization', metavar='FLOAT', type=click.FloatRange(min=0), default=0, show_default=True)
# Misc hyperparameters.
@click.option('--p', help='Probability for --aug=fixed', metavar='FLOAT', type=click.FloatRange(min=0, max=1), default=0.2, show_default=True)
@click.option('--target', help='Target value for --aug=ada', metavar='FLOAT', type=click.FloatRange(min=0, max=1), default=0.6, show_default=True)
@click.option('--batch-gpu', help='Limit batch size per GPU', metavar='INT', type=click.IntRange(min=1))
@click.option('--cbase_d', help='Capacity multiplier (D)', metavar='INT', type=click.IntRange(min=1), default=32768, show_default=True)
@click.option('--cmax_d', help='Max. feature maps', metavar='INT', type=click.IntRange(min=1), default=512, show_default=True)
@click.option('--cbase_g', help='Capacity multiplier (G)', metavar='INT', type=click.IntRange(min=1), default=4000 , show_default=True)
@click.option('--cmax_g', help='Max. feature maps', metavar='INT', type=click.IntRange(min=1), default=512, show_default=True)
@click.option('--glr', help='G learning rate [default: varies]', metavar='FLOAT', type=click.FloatRange(min=0), default=0.0025, show_default=True)
@click.option('--dlr', help='D learning rate', metavar='FLOAT', type=click.FloatRange(min=0), default=0.002, show_default=True)
@click.option('--mbstd-group', help='Minibatch std group size', metavar='INT', type=click.IntRange(min=1), default=4, show_default=True)
# Misc settings.
@click.option('--desc', help='String to include in result dir name', metavar='STR', type=str)
@click.option('--metrics', help='Quality metrics', metavar='[NAME|A,B,C|none]', type=parse_comma_separated_list, default='fid10k_full', show_default=True)
@click.option('--kimg', help='Total training duration', metavar='KIMG', type=click.IntRange(min=1), default=25000, show_default=True)
@click.option('--tick', help='How often to print progress', metavar='KIMG', type=click.FloatRange(min=0.001), default=4, show_default=True)
@click.option('--snap', help='How often to save snapshots', metavar='TICKS', type=click.IntRange(min=1), default=50, show_default=True)
@click.option('--snap_ckpt', help='How often to save checkpoints', metavar='TICKS', type=click.IntRange(min=0), default=0, show_default=True)
@click.option('--seed', help='Random seed', metavar='INT', type=click.IntRange(min=0), default=0, show_default=True)
@click.option('--fp32', help='Disable mixed-precision', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--nobench', help='Disable cuDNN benchmarking', metavar='BOOL', type=bool, default=False, show_default=True)
@click.option('--workers', help='DataLoader worker processes', metavar='INT', type=click.IntRange(min=1), default=3, show_default=True)
@click.option('-n','--dry-run', help='Print training options and exit', is_flag=True)
def main(**kwargs):
"""Train a GAN using the techniques described in the paper
"Alias-Free Generative Adversarial Networks".
Examples:
\b
# Train StyleGAN3-T for AFHQv2 using 8 GPUs.
python train.py --outdir=~/training-runs --cfg=stylegan3-t --data=~/datasets/afhqv2-512x512.zip \\
--gpus=8 --batch=32 --gamma=8.2 --mirror=1
\b
# Fine-tune StyleGAN3-R for MetFaces-U using 1 GPU, starting from the pre-trained FFHQ-U pickle.
python train.py --outdir=~/training-runs --cfg=stylegan3-r --data=~/datasets/metfacesu-1024x1024.zip \\
--gpus=8 --batch=32 --gamma=6.6 --mirror=1 --kimg=5000 --snap=5 \\
--resume=https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-r-ffhqu-1024x1024.pkl
\b
# Train StyleGAN2 for FFHQ at 1024x1024 resolution using 8 GPUs.
python train.py --outdir=~/training-runs --cfg=stylegan2 --data=~/datasets/ffhq-1024x1024.zip \\
--gpus=8 --batch=32 --gamma=10 --mirror=1 --aug=noaug
"""
# Initialize config.
opts = dnnlib.EasyDict(kwargs) # Command line arguments.
c = dnnlib.EasyDict() # Main config dict.
c.G_kwargs = dnnlib.EasyDict(class_name='training.networks_voxgraf.Generator', z_dim=64, w_dim=64, mapping_kwargs=dnnlib.EasyDict())
c.D_kwargs = dnnlib.EasyDict(class_name='training.networks_stylegan2.Discriminator', block_kwargs=dnnlib.EasyDict(), mapping_kwargs=dnnlib.EasyDict(), epilogue_kwargs=dnnlib.EasyDict(), architecture='skip')
c.G_opt_kwargs = dnnlib.EasyDict(class_name='torch.optim.Adam', betas=[0,0.99], eps=1e-8)
c.D_opt_kwargs = dnnlib.EasyDict(class_name='torch.optim.Adam', betas=[0,0.99], eps=1e-8)
c.loss_kwargs = dnnlib.EasyDict(class_name='training.loss.VoxGRAFLoss')
c.data_loader_kwargs = dnnlib.EasyDict(pin_memory=True, prefetch_factor=2)
# Training set.
c.training_set_kwargs, dataset_name = init_dataset_kwargs(data=opts.data)
# Camera settings
if dataset_name.startswith('carla'):
c.G_kwargs.pose_kwargs = dnnlib.EasyDict(range_azim=(0, 360), range_polar=(0, 90), dist='uniform', radius=10.0)
dataset_fov = 30.0
grid_radius = [2.5, 2.5, 2.5]
elif dataset_name.startswith('ffhq') or dataset_name.startswith('afhq') or dataset_name.startswith('grafcats'):
c.G_kwargs.pose_kwargs = dnnlib.EasyDict(range_azim=(180, 20), range_polar=(90, 10), dist='normal', radius=10.0)
dataset_fov = 12.6 # from face estimator
grid_radius = [1.2, 1.2, 1.2] # estimate grid size via sin(fov/2)*r * sqrt(2) -> 1.6
else:
raise AttributeError(f'Please specify camera parameters for dataset {dataset_name}.')
c.G_kwargs.render_kwargs = dnnlib.EasyDict(
grid_radius=grid_radius, grid_center=[0, 0, 0], fov=dataset_fov, basis_type=svox2.BASIS_TYPE_SH, basis_dim=1,
opt_kwargs=dnnlib.EasyDict(backend='cuvol', background_brightness=1, step_size=0.5, sigma_thresh=1e-08, stop_thresh=1e-7)
)
# Hyperparameters & settings.
c.num_gpus = opts.gpus
c.batch_size = opts.batch
c.batch_gpu = opts.batch_gpu or opts.batch // opts.gpus
c.D_kwargs.channel_base = opts.cbase_d
c.D_kwargs.channel_max = opts.cmax_d
c.G_kwargs.mapping_kwargs.num_layers = 2
c.G_kwargs.use_bg = opts.use_bg
c.G_kwargs.sigma_mpl = opts.sigma_mpl
c.D_kwargs.block_kwargs.freeze_layers = 0
c.D_kwargs.epilogue_kwargs.mbstd_group_size = opts.mbstd_group
c.loss_kwargs.r1_gamma = opts.gamma
c.G_kwargs.pose_conditioning = c.loss_kwargs.generator_pose_conditioning = True
c.loss_kwargs.p_generator_pose_conditioning = 0.5
c.G_kwargs.c_dim = 12 if c.G_kwargs.pose_conditioning else 0
c.loss_kwargs.discriminator_pose_conditioning = True
c.D_kwargs.c_dim = 12 if c.loss_kwargs.discriminator_pose_conditioning else 0
c.D_kwargs.mapping_kwargs.num_layers = 2
c.D_reg_interval = 4
c.G_reg_interval = None # G regularization is executed with Gmain
c.G_opt_kwargs.lr = opts.glr
c.D_opt_kwargs.lr = opts.dlr
c.metrics = opts.metrics
c.total_kimg = opts.kimg
c.kimg_per_tick = opts.tick
c.image_snapshot_ticks = c.network_snapshot_ticks = opts.snap
c.network_ckpt_ticks = None if opts.snap_ckpt == 0 else opts.snap_ckpt
c.random_seed = c.training_set_kwargs.random_seed = opts.seed
c.data_loader_kwargs.num_workers = opts.workers
# Sanity checks.
if c.batch_size % c.num_gpus != 0:
raise click.ClickException('--batch must be a multiple of --gpus')
if c.batch_size % (c.num_gpus * c.batch_gpu) != 0:
raise click.ClickException('--batch must be a multiple of --gpus times --batch-gpu')
if c.batch_gpu < c.D_kwargs.epilogue_kwargs.mbstd_group_size:
raise click.ClickException('--batch-gpu cannot be smaller than --mbstd')
if any(not metric_main.is_valid_metric(metric) for metric in c.metrics):
raise click.ClickException('\n'.join(['--metrics can only contain the following values:'] + metric_main.list_valid_metrics()))
c.ema_kimg = c.batch_size * 10 / 32
# VoxGRAF settings
c.G_kwargs.fg_kwargs = dnnlib.EasyDict(channel_base=opts.cbase_g, channel_max=opts.cmax_g, grid_resolution=opts.grid_res, dense_resolution=opts.dense_resolution, prune_last=opts.prune_last, sparse_type=opts.sparse_type)
if c.G_kwargs.fg_kwargs.sparse_type == 'minkowski':
try:
import MinkowskiEngine
except:
raise ImportError('Please install Minkowski Engine when using sparse_type=="minkowski"')
c.G_kwargs.bg_kwargs = dnnlib.EasyDict(channel_base=opts.bg_cbase, channel_max=opts.bg_cmax, fused_modconv_default='inference_only')
c.G_kwargs.refinement_kwargs = dnnlib.EasyDict(num_layers=opts.n_refinement, dhidden=16)
# Regularizers
c.loss_kwargs.raw_noise_std = 1. # add noise to sigma values in the beginning of training
c.loss_kwargs.decrease_noise_until = 5000
c.loss_kwargs.no_reg_until = 5000
c.loss_kwargs.tv_kwargs = dnnlib.EasyDict(lambda_tv=opts.lambda_tv_sigma)
c.loss_kwargs.cvg_kwargs = dnnlib.EasyDict(lambda_cvg_fg=opts.lambda_cvg_fg, min_cvg_fg=opts.min_cvg_fg, lambda_cvg_bg=opts.lambda_cvg_bg, min_cvg_bg=opts.min_cvg_bg)
c.loss_kwargs.lambda_vardepth = opts.lambda_vardepth
c.loss_kwargs.lambda_sparsity = opts.lambda_sparsity
# Augmentation.
if opts.aug != 'noaug':
c.augment_kwargs = dnnlib.EasyDict(class_name='training.augment.AugmentPipe', xflip=0, rotate90=0, xint=1, scale=1, rotate=0, aniso=1, xfrac=1, brightness=1, contrast=1, lumaflip=1, hue=1, saturation=1)
if opts.aug == 'ada':
c.ada_target = opts.target
if opts.aug == 'fixed':
c.augment_p = opts.p
# Resume.
if opts.resume is not None:
c.resume_pkl = opts.resume
c.ada_kimg = 100 # Make ADA react faster at the beginning.
c.ema_rampup = None # Disable EMA rampup.
else:
c.resume_pkl = None
# Continue.
c.continue_training = opts.continue_training
# Performance-related toggles.
if opts.fp32:
c.G_kwargs.num_fp16_res = c.G_kwargs.bg_kwargs.num_fp16_res = c.D_kwargs.num_fp16_res = 0
c.G_kwargs.conv_clamp = c.G_kwargs.bg_kwargs.conv_clamp = c.D_kwargs.conv_clamp = None
if opts.nobench:
c.cudnn_benchmark = False
# Description string.
desc = f'{dataset_name:s}-grid{c.G_kwargs.fg_kwargs.grid_resolution}-batch{c.batch_size:d}-gamma{c.loss_kwargs.r1_gamma:g}'
if opts.desc is not None:
desc += f'-{opts.desc}'
# Launch.
launch_training(c=c, desc=desc, outdir=opts.outdir, dry_run=opts.dry_run)
# Check for restart
last_snapshot = misc.get_ckpt_path(c.run_dir)
if os.path.isfile(last_snapshot):
# get current number of training images
with dnnlib.util.open_url(last_snapshot) as f:
cur_nimg = legacy.load_network_pkl(f)['progress']['cur_nimg'].item()
if (cur_nimg//1000) < c.total_kimg:
print('Restart: exit with code 3')
exit(3)
#----------------------------------------------------------------------------
if __name__ == "__main__":
main() # pylint: disable=no-value-for-parameter
#----------------------------------------------------------------------------