Trains a simple convolutional network on the MNIST dataset.
You can run this code and even modify it directly in Google Colab, no installation required:
- TensorFlow dataset
mnist
will be downloaded and prepared automatically, if necessary
Name | Epochs | Walltime | Top-1 accuracy | Metrics | Workdir |
---|---|---|---|---|---|
default | 10 | 7.7m | 99.17% | tfhub.dev | gs://flax_public/examples/mnist/default |
I0828 08:51:41.821526 139971964110656 train.py:130] train epoch: 10, loss: 0.0097, accuracy: 99.69
I0828 08:51:42.248714 139971964110656 train.py:180] eval epoch: 10, loss: 0.0299, accuracy: 99.14
python main.py --workdir=/tmp/mnist --config=configs/default.py
MNIST example allows specifying a hyperparameter configuration by the means of
setting --config
flag. Configuration flag is defined using
config_flags.
config_flags
allows overriding configuration fields. This can be done as
follows:
python main.py \
--workdir=/tmp/mnist --config=configs/default.py \
--config.learning_rate=0.05 --config.num_epochs=5