forked from aharley/pips
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmake_occlusions.py
341 lines (288 loc) · 12.9 KB
/
make_occlusions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
import time
import numpy as np
import timeit
import imageio
import io
import os
import math
from PIL import Image
import sys
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
import math
import torch.nn.functional as F
import utils.improc
from utils.basic import readPFM, print_stats
import random
import glob
import scipy.spatial
from filter_trajs import filter_trajs
from tensorboardX import SummaryWriter
flt3d_path = "../flyingthings"
dsets = ["TRAIN", "TEST"]
subsets = ["A", "B", "C"]
device = 'cuda'
min_lifespan = 8
mod = 'aa' # start
mod = 'ab' # float16
mod = 'ac' # drop hull failures
mod = 'ad' # keep hull failures, but only save if valid
mod = 'ae' # come back to the old method, but export more
# somehow a set of headphones with holes all over made it through
mod = 'af' # drop hull failures
mod = 'ag' # export a single file for all ids in a vid; reject if len(singles_sums_)<3 (instead of 2)
mod = 'ah' # use empty arrays instead of Nones
mod = 'ai' # properly drop hull failures (return None early)
mod = 'aj' # hu_thr=0.95 instead of 0.9
mod = 'ak' # fix bug in filter_trajs, for visibility on last frame
mod = 'al' # hu_thr=0.98
min_size = 32*32
def readImage(name):
if name.endswith('.pfm') or name.endswith('.PFM'):
data = readPFM(name)
if len(data.shape)==3:
return data[:,:,0:3]
else:
return data
return imageio.imread(name)
def flood_fill_hull(image):
points = np.transpose(np.where(image))
hull = scipy.spatial.ConvexHull(points)
deln = scipy.spatial.Delaunay(points[hull.vertices])
idx = np.stack(np.indices(image.shape), axis = -1)
out_idx = np.nonzero(deln.find_simplex(idx) + 1)
out_img = np.zeros(image.shape)
out_img[out_idx] = 1
return out_img, hull
def consider_id(id_, all_rgbs, all_masks, all_flows_f, all_flows_b,
fw_thr=0.95, bw_thr=0.95, hu_thr=0.98):
# fw_thr=0.5, bw_thr=0.5, hu_thr=0.3):
# fw_thr=0.6, bw_thr=0.6, hu_thr=0.0):
B, S, C, H, W = all_rgbs.shape
singles = (all_masks==id_).float()
singles_flat = singles.reshape(S, -1)
singles_sums = torch.sum(singles_flat, dim=1)
singles_sums_ = singles_sums[singles_sums > 0]
mean_nonzero_size = torch.mean(singles_sums[singles_sums > 0])
if mean_nonzero_size < min_size*2:
return None, None, None
# min presence
if len(singles_sums_) < 3:
return None, None, None
singles_fat = singles.clone()
hu_match_amounts = []
for s in range(S):
single = singles[:,s]
if torch.sum(single) > 4:
try:
single_py = single.reshape(H,W).cpu().long().numpy()
close, _ = flood_fill_hull(single_py)
close = torch.from_numpy(close).float().cuda()
inter = close*single.reshape(H,W).float()
union = (close+single.reshape(H,W).float()).clamp(0,1)
hu_match_amount = torch.sum(inter)/torch.sum(union)
singles_fat[0,s,0] = singles_fat[0,s,0]*0.5 + close*0.5
if hu_match_amount < hu_thr:
return None, None, None
except Exception as e:
# if the shape broke my convex hull function, just drop it
return None, None, None
else:
hu_match_amount = torch.tensor(1.0, device='cuda')
hu_match_amounts.append(hu_match_amount)
fw_match_amounts = []
for s in range(S-1):
single = singles[:,s]
single_next = singles[:,s+1]
if torch.sum(single) > min_size:
ys, xs = utils.basic.meshgrid2d(1, H, W)
xs = xs.reshape(-1).long()
ys = ys.reshape(-1).long()
ys = ys[single.reshape(-1) > 0]
xs = xs[single.reshape(-1) > 0]
delta = all_flows_f[0,s,:,ys,xs] # 2, N
xs_ = (xs + delta[0]).round().long()
ys_ = (ys + delta[1]).round().long()
inds_ok = (xs_ >= 0) & (xs_ <= W-1) & (ys_ >= 0) & (ys_ <= H-1)
xs_ = xs_[inds_ok]
ys_ = ys_[inds_ok]
if len(xs_) > min_size:
match_next = single_next[0,0,ys_,xs_]
fw_match_amount = torch.mean(match_next)
if fw_match_amount < fw_thr:
return None, None, None
else:
fw_match_amount = torch.tensor(1.0, device='cuda')
else:
fw_match_amount = torch.tensor(1.0, device='cuda')
fw_match_amounts.append(fw_match_amount)
fw_match_amounts.append(torch.tensor(1.0, device='cuda'))
bw_match_amounts = []
bw_match_amounts.append(torch.tensor(1.0, device='cuda'))
for s in range(S-1):
single = singles[:,s]
single_next = singles[:,s+1]
if torch.sum(single) > min_size:
ys, xs = utils.basic.meshgrid2d(1, H, W)
xs = xs.reshape(-1).long()
ys = ys.reshape(-1).long()
ys = ys[single_next.reshape(-1) > 0]
xs = xs[single_next.reshape(-1) > 0]
delta = all_flows_b[0,s,:,ys,xs]
xs_ = (xs + delta[0]).round().long()
ys_ = (ys + delta[1]).round().long()
inds_ok = (xs_ >= 0) & (xs_ <= W-1) & (ys_ >= 0) & (ys_ <= H-1)
xs_ = xs_[inds_ok]
ys_ = ys_[inds_ok]
if len(xs_) > min_size:
match_prev = single[0,0,ys_,xs_]
bw_match_amount = torch.mean(match_prev)
# print('match_amount on frame %d' % s, match_amount)
if bw_match_amount < bw_thr:
return None, None, None
else:
bw_match_amount = torch.tensor(1.0, device='cuda')
else:
bw_match_amount = torch.tensor(1.0, device='cuda')
bw_match_amounts.append(bw_match_amount)
# print('hu match_amounts', torch.stack(hu_match_amounts).cpu().numpy())
# print('fw match_amounts', torch.stack(fw_match_amounts).cpu().numpy())
# print('bw match_amounts', torch.stack(bw_match_amounts).cpu().numpy())
ys, xs = utils.basic.meshgrid2d(1, H, W)
xs = xs.reshape(-1)
ys = ys.reshape(-1)
xs = xs[singles[:,0].reshape(-1)>0]
ys = ys[singles[:,0].reshape(-1)>0]
if len(xs):
# print('assembling trajs...'
coords = []
coord = torch.stack([xs, ys], dim=1) # N, 2
coords.append(coord)
for s in range(S-1):
# delta = utils.samp.bilinear_sample2d(all_flows_f[:,s], coord[:,:,0].round(), coord[:,:,1].round()).permute(0,2,1) # 1,N,2: forward flow at the discrete points
x_ = coord[:,0].round().long()
y_ = coord[:,1].round().long()
delta = all_flows_f[0,s,:,y_.clamp(0,H-1),x_.clamp(0,W-1)].permute(1,0) # 1,N,2: forward flow at the discrete points
# print('delta', delta.shape)
coord = coord + delta
coords.append(coord)
trajs_e = torch.stack(coords, dim=0).unsqueeze(0) # 1,S,N,2
trajs_e = filter_trajs(trajs_e, all_masks, all_flows_f, all_flows_b)
else:
trajs_e = torch.zeros((1,S,0,2), dtype=torch.float32, device='cuda')
return singles_fat, trajs_e, fw_match_amounts
def helper(rgb_path, mask_path, flow_path, out_dir, folder_name, lr, start_ind, sw=None, include_vis=False):
cur_out_dir = os.path.join(out_dir, folder_name, lr)
out_f = os.path.join(cur_out_dir, 'occluder_at_%d.npy' % (start_ind))
if os.path.isfile(out_f):
sys.stdout.write(':')
return
if not os.path.exists(cur_out_dir):
os.makedirs(cur_out_dir)
cur_rgb_path = os.path.join(rgb_path, folder_name, lr)
cur_mask_path = os.path.join(mask_path, folder_name, lr)
cur_flow_f_path = os.path.join(flow_path, folder_name, "into_future", lr)
cur_flow_b_path = os.path.join(flow_path, folder_name, "into_past", lr)
img_names = [folder.split('/')[-1].split('.')[0] for folder in glob.glob(os.path.join(cur_rgb_path, "*"))]
img_names = sorted(img_names)
masks = []
for img_name in img_names:
masks.append(readImage(os.path.join(cur_mask_path, '{0}.pfm'.format(img_name))))
bak_all_masks = torch.from_numpy(np.stack(masks, 0)).to(device).unsqueeze(0).unsqueeze(2) # 1, S, 1, H, W
# read rgbs and flows
rgbs = []
flows_f = []
flows_b = []
for img_name in img_names:
rgbs.append(np.array(Image.open(os.path.join(cur_rgb_path, '{0}.webp'.format(img_name)))))
try:
if lr == "left":
flows_f.append(readPFM(os.path.join(cur_flow_f_path, 'OpticalFlowIntoFuture_{0}_L.pfm'.format(img_name)))[:,:,:2])
flows_b.append(readPFM(os.path.join(cur_flow_b_path, 'OpticalFlowIntoPast_{0}_L.pfm'.format(img_name)))[:,:,:2])
else:
flows_f.append(readPFM(os.path.join(cur_flow_f_path, 'OpticalFlowIntoFuture_{0}_R.pfm'.format(img_name)))[:,:,:2])
flows_b.append(readPFM(os.path.join(cur_flow_b_path, 'OpticalFlowIntoPast_{0}_R.pfm'.format(img_name)))[:,:,:2])
except FileNotFoundError:
sys.stdout.write('!')
sys.stdout.flush()
return
bak_all_rgbs = utils.improc.preprocess_color(torch.from_numpy(np.stack(rgbs, 0)).to(device)).permute(0,3,1,2).unsqueeze(0)
bak_all_flows_f = torch.from_numpy(np.stack(flows_f, 0)).to(device).permute(0,3,1,2).unsqueeze(0)
bak_all_flows_b = torch.from_numpy(np.stack(flows_b, 0)).to(device).permute(0,3,1,2).unsqueeze(0)
_, bak_S, _, H, W = bak_all_rgbs.shape
all_masks = bak_all_masks[:,start_ind:start_ind+min_lifespan]
all_rgbs = bak_all_rgbs[:,start_ind:start_ind+min_lifespan]
all_flows_f = bak_all_flows_f[:,start_ind:start_ind+min_lifespan-1]
all_flows_b = bak_all_flows_b[:,start_ind+1:start_ind+min_lifespan+1]
S = min_lifespan
ids, counts = torch.unique(all_masks, return_counts=True)
all_ids = []
all_trajs = []
save_d = {}
for ii in range(len(ids)):
id_ = ids[ii]
if include_vis:
sw.summ_rgbs('inputs_%d/rgbs' % start_ind, all_rgbs.unbind(1))
sw.summ_oneds('inputs_%d/masks' % start_ind, all_masks.unbind(1))
singles, trajs, stats = consider_id(id_, all_rgbs, all_masks, all_flows_f, all_flows_b)
if singles is not None:
N = trajs.shape[2]
if include_vis:
sw.summ_rgbs('inputs_%d/singles_rgb_%d' % (start_ind, ii), ((singles*(all_rgbs+0.5))-0.5).unbind(1), frame_ids=stats)
max_show = 100
if trajs.shape[2] > max_show:
inds = utils.geom.farthest_point_sample(trajs[:,0], max_show, deterministic=False)
trajs_ = trajs[:,:,inds.reshape(-1)]
else:
trajs_ = trajs.clone()
if trajs_.shape[2] > 0:
sw.summ_traj2ds_on_rgbs('outputs_%d/trajs_on_single_%d' % (start_ind, ii), trajs_, (singles*(all_rgbs+0.5))-0.5, cmap='winter', frame_ids=list(range(S)))
trajs = trajs[0].detach().cpu().numpy().astype(np.float16)
id_ = id_.detach().cpu().numpy()
save_d['%d' % int(id_)] = trajs
all_trajs.append(trajs)
all_ids.append(id_)
# endif not None
# end loop over ids
np.save(out_f, save_d)
sys.stdout.write('.')
sys.stdout.flush()
def go():
## choose hyps
log_freq = 1
include_vis = False
log_dir = 'logs_make_occlusions'
import datetime
exp_date = datetime.datetime.now().strftime('%H:%M:%S')
exp_name = '%s' % (exp_date)
print(exp_name)
writer = SummaryWriter(log_dir + '/' + exp_name, max_queue=10, flush_secs=60)
global_step = 0
for dset in dsets:
for subset in subsets:
rgb_path = os.path.join(flt3d_path, "frames_cleanpass_webp", dset, subset)
flow_path = os.path.join(flt3d_path, "optical_flow", dset, subset)
mask_path = os.path.join(flt3d_path, "object_index", dset, subset)
folder_names = [folder.split('/')[-1] for folder in glob.glob(os.path.join(rgb_path, "*"))]
print(flt3d_path, dset, subset, mod)
out_dir = os.path.join(flt3d_path, "occluders_%s" % mod, dset, subset)
if not os.path.exists(out_dir):
os.makedirs(out_dir)
random.shuffle(folder_names)
for folder_name in folder_names:
for lr in ['left', 'right']:
for start_ind in [0,1,2]:
global_step += 1
sw = utils.improc.Summ_writer(
writer=writer,
global_step=global_step,
log_freq=log_freq,
fps=5,
scalar_freq=100,
just_gif=True)
helper(rgb_path, mask_path, flow_path, out_dir, folder_name, lr, start_ind, sw=sw, include_vis=include_vis)
sys.stdout.flush()
print('done')
if __name__ == "__main__":
go()