forked from FastLED/FastLED
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fastled_delay.h
140 lines (114 loc) · 4.62 KB
/
fastled_delay.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#ifndef __INC_FL_DELAY_H
#define __INC_FL_DELAY_H
#include "FastLED.h"
///@file fastled_delay.h
///Utility functions and classes for managing delaycycles
FASTLED_NAMESPACE_BEGIN
/// Class to ensure that a minimum amount of time has kicked since the last time run - and delay if not enough time has passed yet
/// this should make sure that chipsets that have
template<int WAIT> class CMinWait {
uint16_t mLastMicros;
public:
CMinWait() { mLastMicros = 0; }
void wait() {
uint16_t diff;
do {
diff = (micros() & 0xFFFF) - mLastMicros;
} while(diff < WAIT);
}
void mark() { mLastMicros = micros() & 0xFFFF; }
};
////////////////////////////////////////////////////////////////////////////////////////////
//
// Clock cycle counted delay loop
//
////////////////////////////////////////////////////////////////////////////////////////////
// Default is now just 'nop', with special case for AVR
// ESP32 core has it's own definition of NOP, so undef it first
#ifdef ESP32
#undef NOP
#undef NOP2
#endif
#if defined(__AVR__)
# define FL_NOP __asm__ __volatile__ ("cp r0,r0\n");
# define FL_NOP2 __asm__ __volatile__ ("rjmp .+0");
#else
# define FL_NOP __asm__ __volatile__ ("nop\n");
# define FL_NOP2 __asm__ __volatile__ ("nop\n\t nop\n");
#endif
// predeclaration to not upset the compiler
template<int CYCLES> inline void delaycycles();
template<int CYCLES> inline void delaycycles_min1() {
delaycycles<1>();
delaycycles<CYCLES-1>();
}
// TODO: ARM version of _delaycycles_
// usable definition
#if defined(FASTLED_AVR)
// worker template - this will nop for LOOP * 3 + PAD cycles total
template<int LOOP, int PAD> inline void _delaycycles_AVR() {
delaycycles<PAD>();
// the loop below is 3 cycles * LOOP. the LDI is one cycle,
// the DEC is 1 cycle, the BRNE is 2 cycles if looping back and
// 1 if not (the LDI balances out the BRNE being 1 cycle on exit)
__asm__ __volatile__ (
" LDI R16, %0\n"
"L_%=: DEC R16\n"
" BRNE L_%=\n"
: /* no outputs */
: "M" (LOOP)
: "r16"
);
}
template<int CYCLES> __attribute__((always_inline)) inline void delaycycles() {
_delaycycles_AVR<CYCLES / 3, CYCLES % 3>();
}
#else
// template<int LOOP, int PAD> inline void _delaycycles_ARM() {
// delaycycles<PAD>();
// // the loop below is 3 cycles * LOOP. the LDI is one cycle,
// // the DEC is 1 cycle, the BRNE is 2 cycles if looping back and
// // 1 if not (the LDI balances out the BRNE being 1 cycle on exit)
// __asm__ __volatile__ (
// " mov.w r9, %0\n"
// "L_%=: subs.w r9, r9, #1\n"
// " bne.n L_%=\n"
// : /* no outputs */
// : "M" (LOOP)
// : "r9"
// );
// }
template<int CYCLES> __attribute__((always_inline)) inline void delaycycles() {
// _delaycycles_ARM<CYCLES / 3, CYCLES % 3>();
FL_NOP; delaycycles<CYCLES-1>();
}
#endif
// pre-instantiations for values small enough to not need the loop, as well as sanity holders
// for some negative values.
template<> __attribute__((always_inline)) inline void delaycycles<-10>() {}
template<> __attribute__((always_inline)) inline void delaycycles<-9>() {}
template<> __attribute__((always_inline)) inline void delaycycles<-8>() {}
template<> __attribute__((always_inline)) inline void delaycycles<-7>() {}
template<> __attribute__((always_inline)) inline void delaycycles<-6>() {}
template<> __attribute__((always_inline)) inline void delaycycles<-5>() {}
template<> __attribute__((always_inline)) inline void delaycycles<-4>() {}
template<> __attribute__((always_inline)) inline void delaycycles<-3>() {}
template<> __attribute__((always_inline)) inline void delaycycles<-2>() {}
template<> __attribute__((always_inline)) inline void delaycycles<-1>() {}
template<> __attribute__((always_inline)) inline void delaycycles<0>() {}
template<> __attribute__((always_inline)) inline void delaycycles<1>() {FL_NOP;}
template<> __attribute__((always_inline)) inline void delaycycles<2>() {FL_NOP2;}
template<> __attribute__((always_inline)) inline void delaycycles<3>() {FL_NOP;FL_NOP2;}
template<> __attribute__((always_inline)) inline void delaycycles<4>() {FL_NOP2;FL_NOP2;}
template<> __attribute__((always_inline)) inline void delaycycles<5>() {FL_NOP2;FL_NOP2;FL_NOP;}
// Some timing related macros/definitions
// Macro to convert from nano-seconds to clocks and clocks to nano-seconds
// #define NS(_NS) (_NS / (1000 / (F_CPU / 1000000L)))
#define F_CPU_MHZ (F_CPU / 1000000L)
// #define NS(_NS) ( (_NS * (F_CPU / 1000000L))) / 1000
#define NS(_NS) (((_NS * F_CPU_MHZ) + 999) / 1000)
#define CLKS_TO_MICROS(_CLKS) ((long)(_CLKS)) / (F_CPU / 1000000L)
// Macro for making sure there's enough time available
#define NO_TIME(A, B, C) (NS(A) < 3 || NS(B) < 3 || NS(C) < 6)
FASTLED_NAMESPACE_END
#endif