-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsurvey_autoencoder.py
98 lines (77 loc) · 3.79 KB
/
survey_autoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import glob
import os
import numpy as np
import pandas as pd
import joblib
from keras.layers import (Input, Dense, TimeDistributed, Activation, LSTM, GRU,
Dropout, merge, Reshape, Flatten, RepeatVector,
Conv1D, AtrousConv1D, MaxPooling1D, SimpleRNN)
from custom_layers import PhasedLSTM
from keras.models import Model, Sequential
from keras.preprocessing.sequence import pad_sequences
import keras_util as ku
from autoencoder import encoder, decoder
from light_curve import LightCurve
# TODO interpolate at different time points
def preprocess(X_raw, m_max=np.inf):
X = X_raw.copy()
wrong_units = np.all(np.isnan(X[:, :, 1])) | (np.nanmax(X[:, :, 1], axis=1) > m_max)
X = X[~wrong_units, :, :]
# Replace times w/ lags
X[:, :, 0] = ku.times_to_lags(X[:, :, 0])
means = np.atleast_2d(np.nanmean(X[:, :, 1], axis=1)).T
X[:, :, 1] -= means
# scales = np.atleast_2d(np.nanmax(np.abs(X[:, :, 1]), axis=1)).T
scales = np.atleast_2d(np.nanstd(X[:, :, 1], axis=1)).T
X[:, :, 1] /= scales
# drop_errors
X = X[:, :, :2]
return X, means, scales, wrong_units
def main(args=None):
args = ku.parse_model_args(args)
np.random.seed(0)
if not args.survey_files:
raise ValueError("No survey files given")
lc_lists = [joblib.load(f) for f in args.survey_files]
n_reps = [max(len(y) for y in lc_lists) // len(x) for x in lc_lists]
combined = sum([x * i for x, i in zip(lc_lists, n_reps)], [])
if args.lomb_score:
combined = [lc for lc in combined if lc.best_score >= args.lomb_score]
if args.ss_resid:
combined = [lc for lc in combined if lc.ss_resid <= args.ss_resid]
split = [el for lc in combined for el in lc.split(args.n_min, args.n_max)]
if args.period_fold:
for lc in split:
lc.period_fold()
X_list = [np.c_[lc.times, lc.measurements, lc.errors] for lc in split]
X_raw = pad_sequences(X_list, value=np.nan, dtype='float', padding='post')
if args.N_train is not None:
X_raw = X_raw[:args.N_train]
model_type_dict = {'gru': GRU, 'lstm': LSTM, 'vanilla': SimpleRNN,
'conv': Conv1D, 'atrous': AtrousConv1D, 'phased': PhasedLSTM}
X, means, scales, wrong_units = preprocess(X_raw, args.m_max)
main_input = Input(shape=(X.shape[1], X.shape[-1]), name='main_input')
aux_input = Input(shape=(X.shape[1], X.shape[-1] - 1), name='aux_input')
model_input = [main_input, aux_input]
encode = encoder(main_input, layer=model_type_dict[args.model_type],
output_size=args.embedding, **vars(args))
decode = decoder(encode, num_layers=args.decode_layers if args.decode_layers
else args.num_layers,
layer=model_type_dict[args.decode_type if args.decode_type
else args.model_type],
n_step=X.shape[1], aux_input=aux_input,
**{k: v for k, v in vars(args).items() if k != 'num_layers'})
model = Model(model_input, decode)
run = ku.get_run_id(**vars(args))
# sample_weight = (~np.isnan(X[:, :, -1])).astype('float')
errors = X_raw[:, :, 2] / scales
sample_weight = 1. / errors
# sample_weight = (sample_weight.T / np.nanmean(sample_weight, axis=1)).T
sample_weight[np.isnan(sample_weight)] = 0.0
X[np.isnan(X)] = 0.
history = ku.train_and_log({'main_input': X, 'aux_input': np.delete(X, 1, axis=2)},
X[:, :, [1]], run, model, sample_weight=sample_weight,
errors=errors, validation_split=0.0, **vars(args))
return X, X_raw, model, means, scales, wrong_units, args
if __name__ == '__main__':
X, X_raw, model, means, scales, wrong_units, args = main()