Skip to content

Latest commit

 

History

History
66 lines (51 loc) · 1.8 KB

README.md

File metadata and controls

66 lines (51 loc) · 1.8 KB

DLCA

detection_visu

left: input (3D volume)

right: output (3D volume. Blue boxes:predictions, red box:GT label)

Table of contents

Introduction

This repository contains the source code and the trained model for our work Deep Learning for Detecting Cerebral Aneurysms on CT Angiography.

Prerequisites

  • Ubuntu
  • Python 3
  • Pytorch 0.4.1
  • NVIDIA GPU + CUDA CuDNN

This repository has been tested on NVIDIA TITAN Xp. Configurations (e.g batch size, image patch size) may need to be changed on different platforms.

Installation

  • Clone this repo:
git clone https://github.com/CTA-detection/DLCA.git
cd DLCA
  • Install dependencies:
pip install -r requirements.txt

Usage

1. Preprocess

  • Run command as below.
python ./utils/pre_process.py --input="./raw_data/" --output="./train_data/"

2. Train

  • Run command as below.
python train.py -j=16 -b=12 --input="train_data/" --output="./checkpoint/"

3. Inference

# an example with the image named "brain_CTA.nii.gz"
python inference.py -j=1 -b=1 --resume="./checkpoint/trained_model.ckpt" --input="./test_image/brain_CTA" --output="./prediction/brain_CTA"

Results

Sensitivity False Positive per case
97.5% 13.8