-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathlabel_propagation.py
253 lines (227 loc) · 12 KB
/
label_propagation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import numpy as np
from time import time
from sklearn.metrics.pairwise import euclidean_distances
from collections import Counter
from scipy.sparse.csr import csr_matrix
import sys
from sklearn import semi_supervised
from _collections import defaultdict
from tensor_utils import pad
class RBF(object):
def __init__(self, gamma):
self.gamma = gamma
def __call__(self, X, Y):
distances = euclidean_distances(X, Y)
return np.exp(-self.gamma*distances*distances)
def expander(X, Y):
''' The similarity function used by Ravi and Diao (2015, pp 524)
Ravi, S., & Diao, Q. (2015). Large Scale Distributed Semi-Supervised
Learning Using Streaming Approximation. arXiv:1512.01752 [Cs], 51.
'''
return X.dot(Y.T)
class LabelPropagation(object):
def __init__(self, sess, vocab_path, model_path, batch_size, sim_func=expander):
self.sess = sess
self.batch_size = batch_size
self.sim_func = sim_func
self.vocab = np.load(vocab_path)
import tensorflow as tf
saver = tf.train.import_meta_graph(model_path + '.meta', clear_devices=True)
start_sec = time()
sys.stdout.write('Loading model from %s... ' %model_path)
saver.restore(sess, model_path)
sys.stdout.write('Done (%.0f sec).\n' %(time()-start_sec))
self.x = sess.graph.get_tensor_by_name('Model_1/x:0')
self.predicted_context_embs = sess.graph.get_tensor_by_name('Model_1/predicted_context_embs:0')
self.lens = sess.graph.get_tensor_by_name('Model_1/lens:0')
self.similarity_threshold = 0.95
self.minimum_vertex_degree = 10
self.predicting_elapsed_sec = 0
self.adding_edges_elapsed_sec = 0
self.num_low_degree_vertices = 0
self.num_all_vertices = 0
self.num_added_edges = 0
self.num_total_edges = 0
self.debugging = False
def _convert_sense_ids(self, data):
data2 = dict((lemma, []) for lemma in data)
str2id = {}
ids = []
for lemma in data:
for sense_id, sentence_tokens, target_index in data[lemma]:
if sense_id is None:
sense_id = -1
else:
if sense_id not in str2id:
str2id[sense_id] = len(str2id)
ids.append(sense_id)
sense_id = str2id[sense_id]
data2[lemma].append((sense_id, sentence_tokens, target_index))
return data2, ids
def _apply_label_propagation_model(self, contexts, labels):
label_prop_model = semi_supervised.LabelPropagation(kernel=self.affinity_func)
label_prop_model.fit(contexts, labels)
return label_prop_model.transduction_
def affinity_func(self, X1, X2):
assert X1 is X2, "Unsupported case: two different sets of vectors"
contexts = X1
num_examples = len(contexts)
sims = self.sim_func(contexts, contexts)
sorted_indices = np.dstack(np.unravel_index(np.argsort(-sims.ravel()),
sims.shape))[0]
sorted_indices = [(u, v) for u, v in sorted_indices if u < v] # keep only one of two equivalent pairs
num_most_similar_pairs = int(num_examples*(num_examples-1)*(1-self.similarity_threshold))
selected_pairs = set(pair for pair in sorted_indices[:num_most_similar_pairs])
sorted_within_row_indices = np.argsort(-sims)
# add edges to low-connectivity vertices
degree = Counter()
degree.update(u for u, _ in selected_pairs)
degree.update(v for _, v in selected_pairs)
adding_edges_start_sec = time()
for v in range(num_examples):
if degree[v] < self.minimum_vertex_degree:
self.num_low_degree_vertices += 1
for idx in sorted_within_row_indices[v]:
if degree[v] >= self.minimum_vertex_degree: break
if (v, idx) not in selected_pairs and (idx, v) not in selected_pairs:
selected_pairs.add((v, idx))
degree[v] += 1
degree[idx] += 1
self.num_added_edges += 1
self.adding_edges_elapsed_sec += (time() - adding_edges_start_sec)
self.num_total_edges += len(selected_pairs)
# make the matrix
sims, rows, cols = zip(*[(sims[u,v], u,v) for u,v in selected_pairs] +
[(sims[v,u], v,u) for u,v in selected_pairs])
return csr_matrix((sims, (rows, cols)), shape=(num_examples,num_examples))
def _run_lstm(self, converted_data):
print('Running LSTM...')
# create one big matrix of LSTM input
target_id, pad_id, eos_id = self.vocab['<target>'], self.vocab['<pad>'], self.vocab.get('<eos>')
lstm_input = []
for lemma in converted_data:
for _, sentence_tokens, target_index in converted_data[lemma]:
sentence_as_ids = [self.vocab.get(w) or self.vocab['<unkn>']
for w in sentence_tokens]
sentence_as_ids[target_index] = target_id
lstm_input.append(sentence_as_ids)
lens = np.array([len(s) for s in lstm_input])
lstm_input = pad(lstm_input, pad_id, eos_id)
# process the input in batches
lstm_output = []
for batch_no, batch_start in enumerate(range(0, len(lstm_input), self.batch_size)):
batch_end = min(len(lstm_input), batch_start+self.batch_size)
lstm_output.append(self.sess.run(self.predicted_context_embs,
{self.x: lstm_input[batch_start:batch_end],
self.lens: lens[batch_start:batch_end]}))
if (batch_no+1) % 100 == 0:
print('Batch #%d...' %(batch_no+1))
lstm_output = np.vstack(lstm_output)
# unpack the output into a mapping {lemma --> contexts}
lemma2contexts = {}
start = 0
for lemma in converted_data:
stop = start+len(converted_data[lemma])
lemma2contexts[lemma] = lstm_output[start:stop]
start = stop
assert start == lstm_output.shape[0]
print('Running LSTM... Done.')
return lemma2contexts
def predict(self, data):
'''
input data format: dict(lemma -> list((sense_id[str], sentence_tokens, target_index)))
set sense_id to None for unlabeled instances
batch_size: number of sentences in a batch to be used as input for LSTM
output format: dict(lemma -> list(sense_id)), the order in each list corresponds to the input
'''
start_sec = time()
sense_counts = {}
for lemma in data:
sense_counts[lemma] = Counter()
sense_counts[lemma].subtract(sense for sense, _, _ in data[lemma]
if sense is not None)
self.num_all_vertices += len(data[lemma])
converted_data, sense_ids = self._convert_sense_ids(data)
lemma2context = self._run_lstm(converted_data)
output = {}
for lemma_no, (lemma, contexts) in enumerate(lemma2context.items()):
if self.debugging and lemma_no >= 100: break # for debugging
print("Lemma #%d of %d: %s" %(lemma_no, len(converted_data), lemma))
labels = [sense for sense, _, _ in converted_data[lemma]]
predicted_indices = self._apply_label_propagation_model(contexts, labels)
output[lemma] = [sense_ids[index] for index in predicted_indices]
sense_counts[lemma].update(output[lemma])
if self.debugging: print(sense_counts[lemma].most_common())
self.predicting_elapsed_sec += (time()-start_sec)
return output
def print_stats(self):
print('Predicting time: %.2f min' %(self.predicting_elapsed_sec/60.0))
print('Time for adding edges: %.2f min (%.2f%% of total time)'
%(self.adding_edges_elapsed_sec/60.0,
self.adding_edges_elapsed_sec*100.0/self.predicting_elapsed_sec))
print('Number of vertices with low connectivity: %d (%.2f%% of all vertices)'
%(self.num_low_degree_vertices, self.num_low_degree_vertices*100.0/self.num_all_vertices))
class LabelSpreading(LabelPropagation):
''' Allowing the label properation algorithm to change the underlying gold
annotations. It's designed to work with noisy data but we since we have
a very skewed distribution, we might end up with infrequent senses being
overridden. '''
def _apply_label_propagation_model(self, contexts, labels):
label_prop_model = semi_supervised.LabelSpreading(kernel=self.affinity_func)
label_prop_model.fit(contexts, labels)
return label_prop_model.transduction_
class NearestNeighbor(LabelPropagation):
''' This is a baseline to evaluate label propagation models '''
def predict(self, data):
converted_data, sense_ids = self._convert_sense_ids(data)
lemma2context = self._run_lstm(converted_data)
output = {}
for lemma_no, (lemma, contexts) in enumerate(lemma2context.items()):
if self.debugging and lemma_no >= 100: break # for debugging
print("Lemma #%d of %d: %s" %(lemma_no, len(converted_data), lemma))
d = converted_data[lemma]
labeled_indices = [i for i, (sense, _, _) in enumerate(d) if sense >= 0]
unlabeled_indices = [i for i, (sense, _, _) in enumerate(d) if sense < 0]
# print(len(labeled_indices), len(unlabeled_indices)) # for debugging
labeled_contexts = contexts[labeled_indices]
unlabeled_contexts = contexts[unlabeled_indices]
sims = self.sim_func(unlabeled_contexts, labeled_contexts)
most_similar_labeled_contexts = np.argsort(-sims)[:,0]
predicted_indices = [sense for sense, _, _ in d]
for i, j in zip(unlabeled_indices, most_similar_labeled_contexts):
predicted_indices[i] = d[labeled_indices[j]][0]
output[lemma] = [sense_ids[index] for index in predicted_indices]
return output
def print_stats(self):
pass
class NearestNeighborOfAverage(LabelPropagation):
''' This is a baseline to evaluate label propagation models '''
def predict(self, data):
converted_data, sense_ids = self._convert_sense_ids(data)
if self.debugging: converted_data = dict([converted_data.popitem()])
lemma2context = self._run_lstm(converted_data)
output = {}
for lemma_no, (lemma, contexts) in enumerate(lemma2context.items()):
print("Lemma #%d of %d: %s" %(lemma_no, len(converted_data), lemma))
d = converted_data[lemma]
sense2indices = defaultdict(list)
for i, (sense, _, _) in enumerate(d):
if sense >= 0:
sense2indices[sense].append(i)
averaged_contexts = np.empty((len(sense2indices), contexts.shape[1]))
context2sense = {}
for context_id, (sense, indices) in enumerate(sense2indices.items()):
context2sense[context_id] = sense
averaged_contexts[context_id] = contexts[indices].mean()
# print(len(labeled_indices), len(unlabeled_indices)) # for debugging
unlabeled_indices = [i for i, (sense, _, _) in enumerate(d) if sense < 0]
unlabeled_contexts = contexts[unlabeled_indices]
sims = self.sim_func(unlabeled_contexts, averaged_contexts)
most_similar_averaged_contexts = np.argsort(-sims)[:,0]
predicted_indices = [sense for sense, _, _ in d]
for i, j in zip(unlabeled_indices, most_similar_averaged_contexts):
predicted_indices[i] = context2sense[j]
output[lemma] = [sense_ids[index] for index in predicted_indices]
return output
def print_stats(self):
pass