-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathguess3.py
114 lines (78 loc) · 3.83 KB
/
guess3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
#coding=utf8
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
from model import select_model, get_checkpoint
from utils import ImageCoder, make_batch
AGE_MODEL_PATH = '/Users/apple/Desktop/try/age_model'
GENDER_MODEL_PATH = './gender_model'
RESIZE_FINAL = 227
GENDER_LIST = ['MALE', 'FEMALE']
AGE_LIST = ['(0, 2)', '(4, 6)', '(8, 12)', '(15, 20)', '(25, 32)', '(38, 43)', '(48, 53)', '(60, 100)']
tf.app.flags.DEFINE_string('model_dir', '',
'Model directory (where training data lives)')
tf.app.flags.DEFINE_string('class_type', 'gender',
'Classification type (age|gender)')
tf.app.flags.DEFINE_string('device_id', '/cpu:0',
'What processing unit to execute inference on')
tf.app.flags.DEFINE_string('filename', '',
'File (Image) or File list (Text/No header TSV) to process')
tf.app.flags.DEFINE_string('target', '',
'CSV file containing the filename processed along with best guess and score')
tf.app.flags.DEFINE_string('checkpoint', 'checkpoint',
'Checkpoint basename')
tf.app.flags.DEFINE_string('model_type', 'inception model',
'Type of convnet')
tf.app.flags.DEFINE_string('requested_step', '', 'Within the model directory, a requested step to restore e.g., 9000')
tf.app.flags.DEFINE_boolean('single_look', False, 'single look at the image or multiple crops')
tf.app.flags.DEFINE_string('face_detection_model', '', 'Do frontal face detection with model specified')
tf.app.flags.DEFINE_string('face_detection_type', 'cascade', 'Face detection model type (yolo_tiny|cascade)')
FLAGS = tf.app.flags.FLAGS
def classify(sess, label_list, softmax_output, coder, images, image_file):
print('Running file %s' % image_file)
image_batch = make_batch(image_file, coder, not FLAGS.single_look)
batch_results = sess.run(softmax_output, feed_dict={images: image_batch.eval()})
output = batch_results[0]
batch_sz = batch_results.shape[0]
for i in range(1, batch_sz):
output = output + batch_results[i]
output /= batch_sz
best = np.argmax(output)
best_choice = (label_list[best], output[best])
print('Guess @ 1 %s, prob = %.2f' % best_choice)
nlabels = len(label_list)
if nlabels > 2:
output[best] = 0
second_best = np.argmax(output)
print('Guess @ 2 %s, prob = %.2f' % (label_list[second_best], output[second_best]))
return best_choice
#调用guessGender前要先初始化
# tf.reset_default_graph()
label_list = GENDER_LIST
nlabels = len(label_list)
print('Executing on %s' % FLAGS.device_id)
model_fn = select_model(FLAGS.model_type)
images = tf.placeholder(tf.float32, [None, RESIZE_FINAL, RESIZE_FINAL, 3])
logits = model_fn(nlabels, images, 1, False)
def guessGender(file): # pylint: disable=unused-argument
with tf.Session() as sess:
with tf.device(FLAGS.device_id):
init = tf.global_variables_initializer()
requested_step = FLAGS.requested_step if FLAGS.requested_step else None
checkpoint_path = '%s' % (GENDER_MODEL_PATH)
model_checkpoint_path, global_step = get_checkpoint(checkpoint_path, requested_step, FLAGS.checkpoint)
saver = tf.train.Saver()
saver.restore(sess, model_checkpoint_path)
softmax_output = tf.nn.softmax(logits)
coder = ImageCoder()
try:
best_choice = classify(sess, label_list, softmax_output, coder, images, file)
# print(best_choice)
return best_choice
except Exception as e:
print(e)
print('Failed to run image %s ' % file)
if __name__ == '__main__':
tf.app.run()