-
Notifications
You must be signed in to change notification settings - Fork 2
/
guess5.py
133 lines (91 loc) · 4.36 KB
/
guess5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import numpy as np
import tensorflow as tf
from model import select_model, get_checkpoint
from utils import ImageCoder, make_batch
def get_files(path):
# return the path of all the files in the dir
file_lists = []
files = os.listdir(path)
for f in files:
if os.path.isfile(path + '/' + f):
if (f[0] != '.') & (f[-1] == 'g'):
file_lists.append(path + '/' + f)
return file_lists
AGE_MODEL_PATH = '/Users/apple/Desktop/try/age_model'
GENDER_MODEL_PATH = './gender_model'
RESIZE_FINAL = 227
GENDER_LIST = ['MALE', 'FEMALE']
AGE_LIST = ['(0, 2)', '(4, 6)', '(8, 12)', '(15, 20)', '(25, 32)', '(38, 43)', '(48, 53)', '(60, 100)']
tf.app.flags.DEFINE_string('model_dir', '',
'Model directory (where training data lives)')
tf.app.flags.DEFINE_string('class_type', 'gender',
'Classification type (age|gender)')
tf.app.flags.DEFINE_string('device_id', '/cpu:0',
'What processing unit to execute inference on')
tf.app.flags.DEFINE_string('filename', '',
'File (Image) or File list (Text/No header TSV) to process')
tf.app.flags.DEFINE_string('target', '',
'CSV file containing the filename processed along with best guess and score')
tf.app.flags.DEFINE_string('checkpoint', 'checkpoint',
'Checkpoint basename')
tf.app.flags.DEFINE_string('model_type', 'inception model',
'Type of convnet')
tf.app.flags.DEFINE_string('requested_step', '', 'Within the model directory, a requested step to restore e.g., 9000')
tf.app.flags.DEFINE_boolean('single_look', False, 'single look at the image or multiple crops')
tf.app.flags.DEFINE_string('face_detection_model', '', 'Do frontal face detection with model specified')
tf.app.flags.DEFINE_string('face_detection_type', 'cascade', 'Face detection model type (yolo_tiny|cascade)')
FLAGS = tf.app.flags.FLAGS
def classify(sess, label_list, softmax_output, coder, images, image_file):
print('Running file %s' % image_file)
image_batch = make_batch(image_file, coder, not FLAGS.single_look)
batch_results = sess.run(softmax_output, feed_dict={images: image_batch.eval()})
output = batch_results[0]
batch_sz = batch_results.shape[0]
for i in range(1, batch_sz):
output = output + batch_results[i]
output /= batch_sz
best = np.argmax(output)
best_choice = (label_list[best], output[best])
print('Guess @ 1 %s, prob = %.2f' % best_choice)
nlabels = len(label_list)
if nlabels > 2:
output[best] = 0
second_best = np.argmax(output)
print('Guess @ 2 %s, prob = %.2f' % (label_list[second_best], output[second_best]))
return best_choice
def guessGender(path): # pylint: disable=unused-argument
# 检测文件夹中所有照片的性别
with tf.Session() as sess:
# tf.reset_default_graph()
label_list = GENDER_LIST
nlabels = len(label_list)
print('Executing on %s' % FLAGS.device_id)
model_fn = select_model(FLAGS.model_type)
with tf.device(FLAGS.device_id):
images = tf.placeholder(tf.float32, [None, RESIZE_FINAL, RESIZE_FINAL, 3])
logits = model_fn(nlabels, images, 1, False)
init = tf.global_variables_initializer()
requested_step = FLAGS.requested_step if FLAGS.requested_step else None
checkpoint_path = '%s' % (GENDER_MODEL_PATH)
model_checkpoint_path, global_step = get_checkpoint(checkpoint_path, requested_step, FLAGS.checkpoint)
saver = tf.train.Saver()
saver.restore(sess, model_checkpoint_path)
softmax_output = tf.nn.softmax(logits)
coder = ImageCoder()
files = get_files(path)
gender_dict = {}
try:
for f in files:
best_choice = classify(sess, label_list, softmax_output, coder, images, f)
# print(best_choice)
gender_dict[f[len(path) + 1:]] = best_choice
return(best_choice)
except Exception as e:
print(e)
print('Failed to run image %s ' % file)
if __name__ == '__main__':
tf.app.run()