-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
105 lines (84 loc) · 3.45 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from datetime import datetime
import sys
import math
import time
from data import inputs, standardize_image
import numpy as np
import tensorflow as tf
RESIZE_AOI = 256
RESIZE_FINAL = 227
# Read image files
class ImageCoder(object):
def __init__(self):
# Create a single Session to run all image coding calls.
self._sess = tf.Session()
# Initializes function that converts PNG to JPEG data.
self._png_data = tf.placeholder(dtype=tf.string)
image = tf.image.decode_png(self._png_data, channels=3)
self._png_to_jpeg = tf.image.encode_jpeg(image, format='rgb', quality=100)
# Initializes function that decodes RGB JPEG data.
self._decode_jpeg_data = tf.placeholder(dtype=tf.string)
self._decode_jpeg = tf.image.decode_jpeg(self._decode_jpeg_data, channels=3)
self.crop = tf.image.resize_images(self._decode_jpeg, (RESIZE_AOI, RESIZE_AOI))
def png_to_jpeg(self, image_data):
return self._sess.run(self._png_to_jpeg,
feed_dict={self._png_data: image_data})
def decode_jpeg(self, image_data):
image = self._sess.run(self.crop, #self._decode_jpeg,
feed_dict={self._decode_jpeg_data: image_data})
assert len(image.shape) == 3
assert image.shape[2] == 3
return image
def _is_png(filename):
"""Determine if a file contains a PNG format image.
Args:
filename: string, path of the image file.
Returns:
boolean indicating if the image is a PNG.
"""
return '.png' in filename
def make_batch(filename, coder, multicrop):
"""Process a single image file.
Args:
filename: string, path to an image file e.g., '/path/to/example.JPG'.
coder: instance of ImageCoder to provide TensorFlow image coding utils.
Returns:
image_buffer: string, JPEG encoding of RGB image.
height: integer, image height in pixels.
width: integer, image width in pixels.
"""
# Read the image file.
with tf.gfile.FastGFile(filename, 'r') as f:
image_data = f.read()
# Convert any PNG to JPEG's for consistency.
if _is_png(filename):
print('Converting PNG to JPEG for %s' % filename)
image_data = coder.png_to_jpeg(image_data)
image = coder.decode_jpeg(image_data)
crops = []
if multicrop is False:
print('Running a single image')
crop = tf.image.resize_images(image, (RESIZE_FINAL, RESIZE_FINAL))
image = standardize_image(crop)
crops.append(image)
else:
print('Running multi-cropped image')
h = image.shape[0]
w = image.shape[1]
hl = h - RESIZE_FINAL
wl = w - RESIZE_FINAL
crop = tf.image.resize_images(image, (RESIZE_FINAL, RESIZE_FINAL))
crops.append(standardize_image(crop))
crops.append(tf.image.flip_left_right(crop))
corners = [ (0, 0), (0, wl), (hl, 0), (hl, wl), (int(hl/2), int(wl/2))]
for corner in corners:
ch, cw = corner
cropped = tf.image.crop_to_bounding_box(image, ch, cw, RESIZE_FINAL, RESIZE_FINAL)
crops.append(standardize_image(cropped))
flipped = tf.image.flip_left_right(cropped)
crops.append(standardize_image(flipped))
image_batch = tf.stack(crops)
return image_batch