forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_binary.py
65 lines (54 loc) · 1.94 KB
/
train_binary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# Copyright 2019 Deepmind Technologies Limited.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Trains a graph-based network to predict particle mobilities in glasses."""
import os
from absl import app
from absl import flags
from glassy_dynamics import train as train_using_tf
from glassy_dynamics import train_using_jax
FLAGS = flags.FLAGS
flags.DEFINE_string(
'data_directory',
'',
'Directory which contains the train and test datasets.')
flags.DEFINE_integer(
'time_index',
9,
'The time index of the target mobilities.')
flags.DEFINE_integer(
'max_files_to_load',
None,
'The maximum number of files to load from the train and test datasets.')
flags.DEFINE_string(
'checkpoint_path',
None,
'Path used to store a checkpoint of the best model.')
flags.DEFINE_boolean(
'use_jax',
False,
'Uses jax to train model.')
def main(argv):
if len(argv) > 1:
raise app.UsageError('Too many command-line arguments.')
train_file_pattern = os.path.join(FLAGS.data_directory, 'train/aggregated*')
test_file_pattern = os.path.join(FLAGS.data_directory, 'test/aggregated*')
train = train_using_jax if FLAGS.use_jax else train_using_tf
train.train_model(
train_file_pattern=train_file_pattern,
test_file_pattern=test_file_pattern,
max_files_to_load=FLAGS.max_files_to_load,
time_index=FLAGS.time_index,
checkpoint_path=FLAGS.checkpoint_path)
if __name__ == '__main__':
app.run(main)