-
Notifications
You must be signed in to change notification settings - Fork 12
/
sample.py
244 lines (201 loc) · 8.54 KB
/
sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
"""
Generate a large batch of image samples from a model and save them as a large
numpy array. This can be used to produce samples for FID evaluation.
"""
import argparse
import os
from pickle import FALSE
import numpy as np
import torch
import torch as th
import torch.distributed as dist
from guided_diffusion.guided_diffusion.image_datasets import load_sketch, load_data, load_data_sketchstroke
from guided_diffusion.guided_diffusion import dist_util
from guided_diffusion.guided_diffusion.script_util import (
NUM_CLASSES,
model_and_diffusion_defaults,
create_model_and_diffusion,
add_dict_to_argparser,
args_to_dict,
)
from PIL import Image
def save_tensor(im_data, image_dir, image_name):
im = tensor2im(im_data)
save_path = os.path.join(image_dir, str(image_name)) #+ '.png'
save_image(im, save_path)
def tensor2im(input_image, imtype=np.uint8):
""""Converts a Tensor array into a numpy image array.
Parameters:
input_image (tensor) -- the input image tensor array
imtype (type) -- the desired type of the converted numpy array
"""
if not isinstance(input_image, np.ndarray):
if isinstance(input_image, torch.Tensor): # get the data from a variable
image_tensor = input_image.data
else:
return input_image
image_numpy = image_tensor[0].clamp(-1.0, 1.0).cpu().float().numpy() # convert it into a numpy array
if image_numpy.shape[0] == 1: # grayscale to RGB
image_numpy = np.tile(image_numpy, (3, 1, 1))
image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 # post-processing: tranpose and scaling
else: # if it is a numpy array, do nothing
image_numpy = input_image
return image_numpy.astype(imtype)
def save_image(image_numpy, image_path, aspect_ratio=1.0):
"""Save a numpy image to the disk
Parameters:
image_numpy (numpy array) -- input numpy array
image_path (str) -- the path of the image
"""
image_pil = Image.fromarray(image_numpy)
# h, w, _ = image_numpy.shape
# if aspect_ratio is None:
# pass
# elif aspect_ratio > 1.0:
# image_pil = image_pil.resize((h, int(w * aspect_ratio)), Image.BICUBIC)
# elif aspect_ratio < 1.0:
# image_pil = image_pil.resize((int(h / aspect_ratio), w), Image.BICUBIC)
image_pil.save(image_path)
def save_npz_img(name, img_array=None, path=None):
if path is not None:
data = np.load(path)
img_array = data['arr_0']
print(img_array.shape)
img_array = np.squeeze(img_array)
print(img_array.shape)
im = Image.fromarray(img_array)
# this might fail if `img_array` contains a data type that is not supported by PIL,
# in which case you could try casting it to a different dtype e.g.:
# im = Image.fromarray(img_array.astype(np.uint8))
im.save(name)
# im.show()
def postprocessing(image):
image = ((image + 1) * 127.5).clamp(0, 255).to(th.uint8)
image = image.permute(0, 2, 3, 1)
image = image.contiguous()
return image
def main():
os.environ["CUDA_VISIBLE_DEVICES"]= '0'
print(torch.cuda.current_device())
args = create_argparser().parse_args()
dist_util.setup_dist()
print(args_to_dict(args, model_and_diffusion_defaults().keys()))
model, diffusion = create_model_and_diffusion(
**args_to_dict(args, model_and_diffusion_defaults().keys())
)
model.load_state_dict(
dist_util.load_state_dict(args.model_path, map_location="cpu")
)
model.to(dist_util.dev())
if args.use_fp16:
model.convert_to_fp16()
model.eval()
root = os.path.join(os.getcwd(), args.save_name)
os.makedirs(root, exist_ok=True)
os.makedirs(os.path.join(root, 'test_stroke'), exist_ok=True)
os.makedirs(os.path.join(root, 'test_sketch'), exist_ok=True)
os.makedirs(os.path.join(root, 'test_input'), exist_ok=True)
import cv2
from img_process import extract_sketch_and_strokes
paint = cv2.imread(os.path.join(os.getcwd(), args.input_image))
# input == comb
cv2.imwrite(os.path.join(root, 'test_input', 'input_comb.png'), paint)
extract_sketch_and_strokes(paint,
os.path.join(root, 'test_sketch', 'input'),
os.path.join(root, 'test_stroke', 'input'))
sketch = load_sketch(
data_dir=os.path.join(root, 'test_sketch'),
batch_size=args.batch_size,
image_size=args.image_size,
class_cond=args.class_cond,
deterministic=True,
)
stroke = load_data(
data_dir=os.path.join(root, 'test_stroke'),
batch_size=args.batch_size,
image_size=args.image_size,
class_cond=args.class_cond,
deterministic=True,
)
comb = load_data(
data_dir=os.path.join(root, 'test_input'),
batch_size=args.batch_size,
image_size=args.image_size,
class_cond=args.class_cond,
deterministic=True,
)
sketch_input, _ = next(iter(sketch))
sketch_input = sketch_input.to(dist_util.dev())
stroke_input, _ = next(iter(stroke))
stroke_input = stroke_input.to(dist_util.dev())
comb_input, _ = next(iter(comb))
comb_input = comb_input.to(dist_util.dev())
for num in range(args.num_samples):
model_kwargs = {}
if args.class_cond:
classes = th.randint(
low=0, high=NUM_CLASSES, size=(args.batch_size,), device=dist_util.dev()
)
model_kwargs["y"] = classes
unconditional_sketch = torch.full(sketch_input.shape, 127.5/127.5-1)
unconditional_sketch = unconditional_sketch.to(dist_util.dev())
unconditional_stroke = torch.full(stroke_input.shape, 127.5/127.5-1)
unconditional_stroke = unconditional_stroke.to(dist_util.dev())
noise = th.randn((args.batch_size, 3, args.image_size, args.image_size), device=dist_util.dev())
for sketch_guidance_scale in [1]:
for stroke_guidance_scale in [1]:
# Create a classifier-free guidance sampling function
def model_fn(x_t, sketch, stroke, ts):
uncond_model_out = model(x_t, unconditional_sketch, unconditional_stroke, ts)
sketch_model_out = model(x_t, sketch, unconditional_stroke, ts)
stroke_model_out = model(x_t, unconditional_sketch, stroke, ts)
out = uncond_model_out \
+ sketch_guidance_scale * (sketch_model_out-uncond_model_out) \
+ stroke_guidance_scale * (stroke_model_out-uncond_model_out)
return out
val_list = np.arange(0.0, 1.2, 0.2)[::-1]
print(val_list)
for realism in val_list:
sample_fn = (
diffusion.p_sample_loop if not args.use_ddim else diffusion.ddim_sample_loop
)
sample = sample_fn(
model_fn,
(args.batch_size, 3, args.image_size, args.image_size),
sketch = sketch_input,
stroke = stroke_input,
init_image = comb_input,
noise = noise,
clip_denoised=args.clip_denoised,
model_kwargs=model_kwargs,
device = dist_util.dev(),
partial_edit = False,
realism_scale=realism,
lhq=args.lhq,
)
sample = postprocessing(sample)
save_npz_img(
name=os.path.join(os.getcwd(), args.save_name, '{}_real_{:.2f}_sketch_{}_stroke_{}.jpg'.format(
num, realism, sketch_guidance_scale, stroke_guidance_scale)),
img_array=sample.cpu().numpy())
dist.barrier()
def create_argparser():
defaults = dict(
encode_step=250,
clip_denoised=True,
lhq=True, # default False
input_image = './test-examples/realism-example2.png',
save_name = 'adaptive-real-output',
num_samples=5,
batch_size=1,
use_ddim=False,
# model_path = "./checkpoints/flower512.pt",
model_path = "./checkpoints/lhq512.pt",
schedule_sampler="uniform",
)
defaults.update(model_and_diffusion_defaults())
parser = argparse.ArgumentParser()
add_dict_to_argparser(parser, defaults)
return parser
if __name__ == "__main__":
main()