在 平台中租赁一个 3090 等 24G 显存的显卡机器,如下图所示镜像选择 PyTorch-->2.1.0-->3.10(ubuntu22.04)-->12.1
。
接下来打开刚刚租用服务器的 JupyterLab,并且打开其中的终端开始环境配置、模型下载和运行演示。
pip换源和安装依赖包
# 升级pip
python -m pip install --upgrade pip
# 更换 pypi 源加速库的安装
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
pip install modelscope==1.9.5
pip install transformers==4.35.2
pip install streamlit==1.24.0
pip install sentencepiece==0.1.99
pip install accelerate==0.24.1
pip install transformers_stream_generator==0.0.4
使用 modelscope 中的snapshot_download函数下载模型,第一个参数为模型名称,参数cache_dir为模型的下载路径。
在 /root/autodl-tmp 路径下新建 download.py 文件并在其中输入以下内容,粘贴代码后记得保存文件,如下图所示。并运行 python /root/autodl-tmp/download.py 执行下载,模型大小为15 GB,下载模型大概需要10~20分钟
import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer
import os
model_dir = snapshot_download('Lucachen/gemma2b',cache_dir='/root/autodl-tmp', revision='v1.0.4')
在/root/autodl-tmp
路径下新建 chatBot.py
文件并在其中输入以下内容,粘贴代码后记得保存文件。下面的代码有很详细的注释,大家如有不理解的地方,欢迎提出issue。
# 导入所需的库
from transformers import AutoTokenizer, pipeline
import torch
import streamlit as st
# 在侧边栏中创建一个标题和一个链接
with st.sidebar:
st.markdown("## Gemma2b LLM")
"[开源大模型食用指南 self-llm](https://github.com/datawhalechina/self-llm.git)"
# 创建一个滑块,用于选择最大长度,范围在0到1024之间,默认值为512
max_length = st.slider("max_length", 0, 1024, 512, step=1)
# 创建一个标题和一个副标题
st.title("💬 Gemma2b Chatbot")
st.caption("🚀 A streamlit chatbot powered by Self-LLM")
# 定义模型路径
mode_name_or_path = '/root/autodl-tmp/Lucachen/gemma2b'
# 定义一个函数,用于获取模型和tokenizer
@st.cache_resource
def get_model():
# 从预训练的模型中获取tokenizer
tokenizer = AutoTokenizer.from_pretrained(mode_name_or_path, trust_remote_code=True)
# 从预训练的模型中获取生成配置
get_text = pipeline("text-generation",model=mode_name_or_path,model_kwargs={"torch_dtype": torch.bfloat16},device="cuda")
# 设置模型为评估模式
return tokenizer, get_text
# 加载Baichuan-7B-chat的model和tokenizer
tokenizer, get_text = get_model()
# 如果session_state中没有"messages",则创建一个包含默认消息的列表
if "messages" not in st.session_state:
st.session_state["messages"] = []
# 遍历session_state中的所有消息,并显示在聊天界面上
for msg in st.session_state.messages:
st.chat_message(msg["role"]).write(msg["content"])
# 如果用户在聊天输入框中输入了内容,则执行以下操作
if prompt := st.chat_input():
# 将用户的输入添加到session_state中的messages列表中
st.session_state.messages.append({"role": "user", "content": prompt})
# # 在聊天界面上显示用户的输入
st.chat_message("user").write(prompt)
print(st.session_state.messages)
messages = [
{"role": "user", "content": prompt}
]
prompt = get_text.tokenizer.apply_chat_template(st.session_state.messages, tokenize=False, add_generation_prompt=True)
outputs = get_text(
prompt,
max_new_tokens=1024,
add_special_tokens=True,
do_sample=True,
temperature=0.7,
top_k=50,
top_p=0.95
)
response = outputs[0]["generated_text"][len(prompt):]
# 将模型的输出添加到session_state中的messages列表中
st.session_state.messages.append({"role": "assistant", "content": response})
# 在聊天界面上显示模型的输出
st.chat_message("assistant").write(response)
在终端中运行以下命令,启动streamlit服务,并按照 autodl
的指示将端口映射到本地,然后在浏览器中打开链接 http://localhost:6006/ ,即可看到聊天界面。
streamlit run /root/autodl-tmp/chatBot.py --server.address 127.0.0.1 --server.port 6006
如下所示: