本节我们简要介绍如何基于 transformers、peft 等框架,对 Gemma-2-9b-it 模型进行 Lora 微调。Lora 是一种高效微调方法,深入了解其原理可参见博客:知乎|深入浅出Lora。
这个教程会在同目录下给大家提供一个 nodebook 文件,来让大家更好的学习。
使用 modelscope 中的 snapshot_download 函数下载模型,第一个参数为模型名称,参数 cache_dir 为模型的下载路径。
在 /root/autodl-tmp 路径下新建 model_download.py 文件并在其中输入以下内容,粘贴代码后请及时保存文件,如下图所示。并运行 python /root/autodl-tmp/model_download.py
执行下载,模型大小为 18GB,下载模型大概需要 10 分钟。
from modelscope import snapshot_download
model_dir = snapshot_download('LLM-Research/gemma-2-9b-it', cache_dir='/root/autodl-tmp')
在完成基本环境配置和本地模型部署的情况下,你还需要安装一些第三方库,可以使用以下命令:
python -m pip install --upgrade pip
# 更换 pypi 源加速库的安装
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
pip install transformers==4.42.3 # 请务必安装 4.42.3 版本
pip install datasets peft
考虑到部分同学配置环境可能会遇到一些问题,我们在AutoDL平台准备了Gemma2 的环境镜像,该镜像适用于该仓库的 Gemma2 教程所有部署环境。点击下方链接并直接创建Autodl示例即可。 https://www.codewithgpu.com/i/datawhalechina/self-llm/self-llm-gemma2
在本节教程里,我们将微调数据集放置在根目录 /dataset。
LLM 的微调一般指指令微调过程。所谓指令微调,是说我们使用的微调数据形如:
{
"instruction":"回答以下用户问题,仅输出答案。",
"input":"1+1等于几?",
"output":"2"
}
其中,instruction
是用户指令,告知模型其需要完成的任务;input
是用户输入,是完成用户指令所必须的输入内容;output
是模型应该给出的输出。
即我们的核心训练目标是让模型具有理解并遵循用户指令的能力。因此,在指令集构建时,我们应针对我们的目标任务,针对性构建任务指令集。例如,在本节我们使用由笔者合作开源的 Chat-甄嬛 项目作为示例,我们的目标是构建一个能够模拟甄嬛对话风格的个性化 LLM,因此我们构造的指令形如:
{
"instruction": "你是谁?",
"input":"",
"output":"家父是大理寺少卿甄远道。"
}
我们所构造的全部指令数据集在根目录下。
Lora
训练的数据是需要经过格式化、编码之后再输入给模型进行训练的,如果是熟悉 Pytorch
模型训练流程的同学会知道,我们一般需要将输入文本编码为 input_ids,将输出文本编码为 labels
,编码之后的结果都是多维的向量。我们首先定义一个预处理函数,这个函数用于对每一个样本,编码其输入、输出文本并返回一个编码后的字典:
def process_func(example):
MAX_LENGTH = 384 # Llama分词器会将一个中文字切分为多个token,因此需要放开一些最大长度,保证数据的完整性
input_ids, attention_mask, labels = [], [], []
instruction = tokenizer(f"<bos><start_of_turn>user\n{example['instruction'] + example['input']}<end_of_turn>\n<start_of_turn>model\n", add_special_tokens=False) # add_special_tokens 不在开头加 special_tokens
response = tokenizer(f"{example['output']}<end_of_turn>\n", add_special_tokens=False)
input_ids = instruction["input_ids"] + response["input_ids"] + [tokenizer.pad_token_id]
attention_mask = instruction["attention_mask"] + response["attention_mask"] + [1] # 因为eos token咱们也是要关注的所以 补充为1
labels = [-100] * len(instruction["input_ids"]) + response["input_ids"] + [tokenizer.pad_token_id]
if len(input_ids) > MAX_LENGTH: # 做一个截断
input_ids = input_ids[:MAX_LENGTH]
attention_mask = attention_mask[:MAX_LENGTH]
labels = labels[:MAX_LENGTH]
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"labels": labels
}
Gemma2
采用的Prompt Template
格式如下:
<bos><start_of_turn>user
小姐,别的秀女都在求中选,唯有咱们小姐想被撂牌子,菩萨一定记得真真儿的——<end_of_turn>
<start_of_turn>model
嘘——都说许愿说破是不灵的。<end_of_turn>
<eos>
模型以半精度形式加载,如果你的显卡比较新的话,可以用torch.bfloat16
形式加载。对于自定义的模型一定要指定trust_remote_code
参数为True
。
tokenizer = AutoTokenizer.from_pretrained('/root/autodl-tmp/LLM-Research/gemma-2-9b-it')
tokenizer.pad_token_id = tokenizer.eos_token_id
tokenizer.padding_side = 'right'
model = AutoModelForCausalLM.from_pretrained('/root/autodl-tmp/LLM-Research/gemma-2-9b-it', device_map="cuda", torch_dtype=torch.bfloat16,)
LoraConfig
这个类中可以设置很多参数,但主要的参数没多少,简单讲一讲,感兴趣的同学可以直接看源码。
task_type
:模型类型target_modules
:需要训练的模型层的名字,主要就是attention
部分的层,不同的模型对应的层的名字不同,可以传入数组,也可以字符串,也可以正则表达式。r
:lora
的秩,具体可以看Lora
原理lora_alpha
:Lora alaph
,具体作用参见Lora
原理
Lora
的缩放是啥嘞?当然不是r
(秩),这个缩放就是lora_alpha/r
, 在这个LoraConfig
中缩放就是4倍。
config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", 'gate_proj', 'up_proj', 'down_proj'],
inference_mode=False, # 训练模式
r=8, # Lora 秩
lora_alpha=32, # Lora alaph,具体作用参见 Lora 原理
lora_dropout=0.1# Dropout 比例
)
TrainingArguments
这个类的源码也介绍了每个参数的具体作用,当然大家可以来自行探索,这里就简单说几个常用的。
output_dir
:模型的输出路径per_device_train_batch_size
:顾名思义batch_size
gradient_accumulation_steps
: 梯度累加,如果你的显存比较小,那可以把batch_size
设置小一点,梯度累加增大一些。logging_steps
:多少步,输出一次log
num_train_epochs
:顾名思义epoch
gradient_checkpointing
:梯度检查,这个一旦开启,模型就必须执行model.enable_input_require_grads()
,这个原理大家可以自行探索,这里就不细说了。
args = TrainingArguments(
output_dir="./output/gemma-2-9b-it",
per_device_train_batch_size=1,
gradient_accumulation_steps=4,
logging_steps=10,
num_train_epochs=3,
save_steps=10, # 为了快速演示,这里设置10,建议你设置成100
learning_rate=1e-4,
save_on_each_node=True,
gradient_checkpointing=True
)
trainer = Trainer(
model=model,
args=args,
train_dataset=tokenized_id,
data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True),
)
trainer.train()
训练好了之后可以使用如下方式加载lora
权重进行推理:
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from peft import PeftModel
mode_path = '/root/autodl-tmp/LLM-Research/gemma-2-9b-it'
lora_path = './output/gemma-2-9b-it/checkpoint-90' # 这里改称你的 lora 输出对应 checkpoint 地址
# 加载tokenizer
tokenizer = AutoTokenizer.from_pretrained(mode_path)
# 加载模型
model = AutoModelForCausalLM.from_pretrained(mode_path, device_map="auto",torch_dtype=torch.bfloat16, trust_remote_code=True).eval()
# 加载lora权重
model = PeftModel.from_pretrained(model, model_id=lora_path)
# 调用模型进行对话生成
chat = [
{ "role": "user", "content": '你好' },
]
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=150)
outputs = tokenizer.decode(outputs[0])
response = outputs.split('model')[-1].replace('<end_of_turn>\n<eos>', '')